• Title/Summary/Keyword: Component materials

Search Result 2,183, Processing Time 0.038 seconds

Synthesis and Characterization of 4-Component Polyimide Films with Various Diamine and Dianhydride Compositions (다양한 조성 변화에 따른 4성분계 폴리이미드 필름 제조와 물성분석)

  • Park, Yun Jun;Yu, Duk Man;Choi, Jong Ho;Ahn, Jeong-Ho;Hong, Young Taik
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.623-626
    • /
    • 2011
  • Various poly(amic acid)s were synthesized from PMDA/BPDA/p-PDA/ODA with different mole ratios and effectively converted into 4-component polyimide films by thermal imidization. The chemical structures and thermo-mechanical properties of polyimide films were examined using Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analyzer (TGA), thermo-mechanical analyzer (TMA), dynamic mechanical analyzer (DMA) and universal tensile machine (UTM). The tensile strength, modulus, and thermal properties of polyimides films increased with the amount of rigid PMDA and p-PDA, while the elongation and moisture absorption of polyimide films increased with the amount of flexible BPDA and ODA. One of 4-component polyimide films exhibited a similar coefficient of thermal expansion (CTE) value to that of copper when it was composed of PMDA : BPDA : p-PDA : ODA with the ratio of 5 : 5 : 4 : 6. Thus, this polyimide film could be useful for a base film for flexible copper clad laminates (FCCL) of flexible printed circuit boards.

A non-merging data analysis method to localize brain source for gait-related EEG (보행 관련 뇌파의 신호원 추정을 위한 비통합 데이터 분석 방법)

  • Song, Minsu;Jung, Jiuk;Jee, In-Hyeog;Chu, Jun-Uk
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.679-688
    • /
    • 2021
  • Gait is an evaluation index used in various clinical area including brain nervous system diseases. Signal source localizing and time-frequency analysis are mainly used after extracting independent components for Electroencephalogram data as a method of measuring and analyzing brain activation related to gait. Existing treadmill-based walking EEG analysis performs signal preprocessing, independent component analysis(ICA), and source localizing by merging data after the multiple EEG measurements, and extracts representative component clusters through inter-subject clustering. In this study we propose an analysis method, without merging to single dataset, that performs signal preprocessing, ICA, and source localization on each measurements, and inter-subject clustering is conducted for ICs extracted from all subjects. The effect of data merging on the IC clustering and time-frequency analysis was investigated for the proposed method and two conventional methods. As a result, it was confirmed that a more subdivided gait-related brain signal component was derived from the proposed "non-merging" method (4 clusters) despite the small number of subjects, than conventional method (2 clusters).

Applications to Thin Film Processing to Solid Oxide Fuel Cells

  • Kim, Eui-Hyun;Hwang, Hee-Su;Ko, Myeong-Hee;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.696-696
    • /
    • 2013
  • Solid Oxide Fuel Cells (SOFCs) have been gaining academic/industrial attention due to the unique high efficiency and minimized pollution emission. SOFCs are an electrochemical system composed of dissimilar materials which operates at relatively high temperatures ranging from 800 to 1000oC. The cell performance is critically dependent on the inherent properties and integration processing of the constituents, a cathode, an electrolyte, an anode, and an interconnect in addition to the sealing materials. In particular, the gas transport, ion transport, and by-product removal also affect the cell performance, in terms of open cell voltages, and cell powers. In particular, the polarization of cathode materials is one of the main sources which affects the overall function in SOFCs. Up to now, there have been studies on the materials design and microstructure design of the component materials. The current work reports the effect of thin film processing on cathode polarization in solid oxide fuel cells. The polarization issues are discussed in terms of dc- and ac-based electrical characterizations. The potential of thin film processing to the applicability to SOFCs is discussed.

  • PDF

Synthesis of Nanostructured Ceria Powders for an Oxygen-sensor by Thermochemical Process (열화학적 방법에 의한 산소센서용 세리아 나노분말 합성)

  • Lee Dong-Won;Choi Joon-Hwan;Lim Tae-Soo;Kim Yong-Jin
    • Journal of Powder Materials
    • /
    • v.13 no.3 s.56
    • /
    • pp.192-198
    • /
    • 2006
  • The nanostructured cerium oxide powders were synthesized by spray thermal decomposition process for the use as the raw materials of resistive oxygen sensor. The synthesis routes consisted of 1) spray drying of water based organic solution made from cerium nitrate hydrate ($Ce(NO_3){_3}6H_2O$) and 2) heat treatment of spray dried precursor powders at $400^{\circ}C$ in air atmosphere to remove the volatile components and identically to oxidize the cerium component. The produced powders have shown the loose structure agglomerated with extremely fine cerium oxide particles with about 15 nm and very high specific surface area ($110m^2/g$). The oxygen sensitivity, n ($Log{\propto}Log (P_{O2}/P^o)^{-n}$ and the response time, $t_{90}$ measured at $600^{\circ}C$ in the sample sintered at $1000^{\circ}C$, were about 0.25 and 3 seconds, respectively, which had much higher performances than those known in micron or $100{\sim}200nm$ sized sensors.

Fabrication and Characterization of Alumina Sol for Coating by a Method of the Mechanical Milling (기계적 분쇄방법을 통한 코팅용 알루미나 졸의 제조 및 평가)

  • Yu, Jeong-Hwan;Jung, Seung-Hwa;Jo, Bum-Rae;Hong, Gyung-Pyo;Mun, Jong-Soo;Kang, Jong-Bong
    • Korean Journal of Materials Research
    • /
    • v.18 no.8
    • /
    • pp.417-421
    • /
    • 2008
  • $Al_2O_3$ sol with long-term stability was prepared by mechanical milling. Thin films were evaluated and created for use as coating materials. The particle size of the manufactured sol was 98 nm when 2 wt% of nitric acid was added. This indicates that the viscosity of the sol is 12 cps and that it has long-term stability. The thickness of the thin films, which varied from 100 nm to 500 nm, could be managed by adjusting the draw rate and the amount of an organic additive. A thin film heated to $500^{\circ}C$ indicated a hydrophilic property against water and excellent permeability against a visible ray.

Galvanic Corrosion Between Component Parts of Aluminum Alloys for Heat Exchanger of Automobile

  • Y. R. Yoo;D. H. Kim;G. B. Kim;S. Y. Won;S. H. Choi;Y. S. Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.322-329
    • /
    • 2023
  • There are a variety of heat exchangers used in automobiles, such as shell and tube heat exchangers, double tube heat exchangers, and plate heat exchangers. Most of them are water-cooled to prevent engine overheating. There have been reports of corrosion damage to these heat exchangers due to continuous wetting caused by external temperature differences, road pollutants, and snow removal. In addition, galvanic corrosion, which occurs when two dissimilar materials come into contact, has been identified as a major cause. In this study, corrosion characteristics and galvanic corrosion behavior of Al alloy (AA3003, AA4045 and AA7072) used in automobile heat exchangers were analyzed. Effective clad materials for heat exchanger tubes and fins were also evaluated. It was found that AA7072 should be applied as the cladding material for fin AA3003 and that AA4045 was suitable as a cladding material for tube AA3003 because this clad materials application was the most effective clad design to delay the occurrence of pinhole in the tube. Main factors influencing galvanic corrosion dissolution were found to be galvanic corrosion potential difference and galvanic corrosion current density.

Current Collector Effects on High Temperature Electrolysis by NI-YSZ Cermet Supported Solid Oxide Cells (집전체에 따른 NI-YSZ Cermet 기반의 가역적 고체산화물 연료전지를 이용한 고온 수증기 전기분해 특성)

  • Shin, Eui-Chol;Ahn, Pyung-An;Seo, Hyun-Ho;Lee, Jong-Sook;Yu, Ji-Haeng;Woo, Sang-Kuk
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.6
    • /
    • pp.533-539
    • /
    • 2010
  • Ni-YSZ supported button cells were prepared by spray-coating YSZ and screen-printing YSZ-LSM powder as an electrolyte and oxygen electrode on Ni-YSZ cermet disks. In order to identify the polarization loss mechanism in high temperature electrolysis current-voltage characteristics coupled with electrochemical impedance spectroscopy were investigated as a function of temperature, current load, and the humidity. The effects of the different current collectors of platinum and silver for oxygen electrodes were compared. With Ag current collector two polarization losses were distinguished. The high frequency component was attributed to the Ni-YSZ cermet which was less susceptible to temperature variation but increasing in loss with humidity. The lower frequency component was attributed to the LSM electrode. Platinum current collector led to a much lower polarization loss.

Effect of Explant and Cultivars on the Adventitious Shoot Differentiation by Invitro Culture of Narcissus (배양재료와 품종이 수선의 기내배양시 부정아 형성에 미치는 영향)

  • 정향영;한봉희
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.2
    • /
    • pp.103-106
    • /
    • 1997
  • In order to establish a micropropagation system of Naricissus, the ability of bulblet regeneration among propagation materials was compared, and the adequate growth regulators and concentrations for each cultivar were investigated. The inorganic components were also assayed in the parts of propagation materials. In propagation materials, scape with based plates showed hightest rate of bulblet formation and rapid growth of formed bulblets in vitro, comparing to other parts of it. In comparing of varieties, 'Dutch Master' and 'Golden Harvest' showed a high ability for bulblet regeneration. The ability of bulblet regeneration was most favorable in the medium, supplemented with 5.0 mg/L BA and 2.5 mg/L NAA in 'Dutch Master', and 5.0 mg/L BA and 1.0mg/L NAA in 'Golden Harvest', respectively. In inorganic component analysis of propagation materials, the White part of scape contained 1.18 mg/L$P_2O_5$, 2.57 me Ca, 0.94 me Mg and 3.20 mg/L total N. It showed higher levels in concentration of inorganic components as compared to those of the other part of scape. In addition, leaves and yellow part of scape contained significantly high levels of Ca and Mg while scales bulb showed considerably low levels in all inorganic compounds.

  • PDF

Prediction of residual chlorine using two-component second-order decay model in water distribution network (이변량 감소모델을 적용한 배급수관망에서의 잔류염소농도 예측 및 이의 활용)

  • Kim, Young Hyo;Kweon, Ji Hyang;Kim, Doo Il
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.3
    • /
    • pp.287-297
    • /
    • 2014
  • It is important to predict chlorine decay with different water purification processes and distribution pipeline materials, especially because chlorine decay is in direct relationship with the stability of water quality. The degree of chlorine decay may affect the water quality at the end of the pipeline: it may produce disinfection by-products or cause unpleasant odor and taste. Sand filtrate and dual media filtrate were used as influents in this study, and cast iron (CI), polyvinyl chloride (PVC), and stainless steel (SS) were used as pipeline materials. The results were analyzed via chlorine decay models by comparing the experimental and model parameters. The models were then used to estimate rechlorination time and chlorine decay time. The results indicated that water quality (e.g. organic matter and alkalinity) and pipeline materials were important factors influencing bulk decay and sand filtrate exhibited greater chlorine decay than dual media filtrate. The two-component second-order model was more applicable than the first decay model, and it enabled the estimation of chlorine decay time. These results are expected to provide the basis for modeling chlorine decay of different water purification processes and pipeline materials.

Synthesis of TiO2 Composited Nitrogen-doped Carbon Supports for High-Performance Methanol Oxidation Activity (고성능 메탄올 산화 반응을 위한 이산화 티타늄 복합화된 질소 도핑 탄소 지지체의 합성)

  • Jo, Hyun-Gi;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.30 no.1
    • /
    • pp.14-21
    • /
    • 2020
  • Carbon supports for dispersed platinum (Pt) electrocatalysts in direct methanol fuel cells (DMFCs) are being continuously developed to improve electrochemical performance and catalyst stability. However, carbon supports still require solutions to reduce costs and improve catalyst efficiency. In this study, we prepare well-dispersed Pt electrocatalysts by introducing titanium dioxide (TiO2) into biomass based nitrogen-doped carbon supports. In order to obtain optimized electrochemical performance, different amounts of TiO2 component are controlled by three types (Pt/TNC-2 wt%, Pt/TNC-4 wt%, and Pt/TNC-6 wt%). Especially, the anodic current density of Pt/TNC-4 wt% is 707.0 mA g-1pt, which is about 1.65 times higher than that of commercial Pt/C (429.1 mA g-1pt); Pt/TNC-4wt% also exhibits excellent catalytic stability, with a retention rate of 91 %. This novel support provides electrochemical performance improvement including several advantages of improved anodic current density and catalyst stability due to the well-dispersed Pt nanoparticles on the support by the introduction of TiO2 component and nitrogen doping in carbon. Therefore, Pt/TNC-4 wt% may be electrocatalyst a promising catalyst as an anode for high-performance DMFCs.