• Title/Summary/Keyword: Component Mode Synthesis

Search Result 75, Processing Time 0.032 seconds

Synthesis of a Novel Nitrogen-Phosphorus Flame Retardant Based on Phosphoramidate and Its Application to PC, PBT, EVA, and ABS

  • Nguyen, Congtranh;Kim, Jin-Hwan
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.620-625
    • /
    • 2008
  • A novel nitrogen-phosphorus compound, diphenyl piperazine-1,4-diylbis(methylphosphinate)(DPPMP) was synthesized via a two step reaction and its flame retarding efficiency as a single component additive was investigated. The success of synthesis was confirmed by FTIR and $^1H$ and $^{31}P$ NMR analysis. The product was mixed with polycarbonate (PC), poly(butylene terephtalate) (PBT), ethylene-vinyl-acetate copolymer (EVA), and acrylonitrile-butadiene-styrene copolymer (ABS). The flame-retarding efficiency was evaluated using the limiting oxygen index (LOI) and the UL-94 vertical test methods. The addition of DPPMP enhanced the flame retardancy of the polymers and the V-0 ratings were obtained for the polymers examined in this study at a loading of 7-30 wt%. The gas-phase flame retardancy mode of action was suggested for this material from the thermogrametry experiment results.

A Study on the Dynamic Characteristics of Turbine due to the Stiffness of Bearing-Pedestal (베어링-지지구조물의 영향에 따른 터빈의 동특성 변화)

  • Kim, Hee-Soo;Bae, Yong-Chae;Kim, Yeon-Whan;Lee, Hyun;Kim, Sung-Hwi;Lee, Young-Shin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1871-1874
    • /
    • 2000
  • It is impossible to predict accurately the dynamic behavior of turbine-generator system because bearing, and rotor characteristics are nonlinear and different from temperature, load, operation speed and bearing lubricant oil property. Especially, the characteristics of turbine hoods affect much the entire vibration characteristics of turbine. As the dynamic stiffness of turbine hoods are changed, the critical speeds of rotor are shifted. In this paper, the vibration behavior of turbine-generator is analyzed by using component mode synthesis and the critical speeds measured during shut-down are compared with the analytic results. It is confirmed that the 1st natural frequency and the mode shape are well in agreement with actual measured data.

  • PDF

A Study on the Vibration Minimization Techniques for the Open Box Type Structure (열린 상자형 구조물의 진동 최소화 기법에 관한 연구)

  • 박석주;오재응;이장용;박성현
    • Journal of KSNVE
    • /
    • v.4 no.4
    • /
    • pp.479-486
    • /
    • 1994
  • The Finite Element Method(FEM) generally used for the structural analysis has some defects, i.e. a great deal of computational time and huge memory capacity of computer are needed in the application to large and/or complex structures, etc. Therefore the Component Mode Synthesis method(CMS), one of sub-structure synthesis methods, was made to improve such demerits and has been developed up to now. In optimum structural modification problems, the sensitivity analysis method is useful, where the sensitivity-calculated by Fox's suggestion-is defined as the diffentials of design variables for the objective values. This paper discusses the vibration minimization techniques for the oper box type structure, in which it is assumed that an engine operates at 10-40Hz range. The results obtained are as follow; (1) The sensitivity of natural frequency could be easily obtained by sensitivity analysis method and the optimum position to insert pillars could be found by using it. (2) The rates of structural modification could be exactly obtained and the natural frequency observed could be easily shifted to the objective value. (3) The maximum amplitude around natural frequency noted could be nearly reduced to 1/25 by modification.

  • PDF

CAE-based DFSS Study for Road Noise Reduction (Road Noise 개선을 위한 CAE 기반 DFSS Study)

  • Kwon, Woo-Sung;Yoo, Bong-Jun;Kim, Byoung-Hoon;Kim, In-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.735-741
    • /
    • 2011
  • In the early phase of vehicle development, CAE is conducted as tool for vehicle performance assessment. To maintain acceptable road noise performance, solution for reduced vehicle sensitivity is required. Chassis interface dynamic stiffness characteristics are key component to isolating vibration and noise of road from the vehicle interior. This research provide how to set up the optimized dynamic characteristics under noise effect through DFSS study. CAE-based DOE is performed to build prediction math model, CMS process involves DOE to achieve very fast run times while giving results very comparable. Minimized $95^{th}$ percentile of performance distribution is applied to minimize vehicle sensitivity and road noise levels variation during the optimization process. Finally, the results of optimization were reviewed for performance and robustness.

  • PDF

CAE-based DFSS Study for Road Noise Reduction (로드 노이즈 개선을 위한 전산응용해석 기반 DFSS 연구)

  • Kwon, Woo-Sung;Yoo, Bong-Jun;Kim, Byoung-Hoon;Kim, In-Dong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.7
    • /
    • pp.674-681
    • /
    • 2011
  • In the early phase of vehicle development, CAE is conducted as tool for vehicle performance assessment. To maintain acceptable road noise performance, solution for reduced vehicle sensitivity is required. Chassis interface dynamic stiffness characteristics are key component to isolating vibration and noise of road from the vehicle interior. This research provide how to set up the optimized dynamic characteristics under noise effect through DFSS study. CAE-based DOE is performed to build prediction math model, CMS process involves DOE to achieve very fast run times while giving results very comparable. Minimized 95th percentile of performance distribution is applied to minimize vehicle sensitivity and road noise levels variation during the optimization process. Finally, the results of optimization were reviewed for performance and robustness.

Technical Papers : Optimization Method of Structure by Using Coupled Load Analysis (기술논문 : 연성하중해석을 이용한 구조 최적화 기법 연구)

  • Lee,Yeong-Sin;Kim,In-Geol;Hwang,Do-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.132-138
    • /
    • 2002
  • Of srategic importance nowdays is the development of high performance spacecraft bus. In this study, optimization for spacecraft structure is performed under the framework of coupled load analysis which is a branch of component mode synthesis with constrained mode and modal transient analysis. unlike the traditional method which uses the quasi-static table supplied by launch vehicle contractor, the present method adots the load results of previous coupled load analysis. It if shown that the proposed method can serve as a effective tool for the optimization spacecraft structure in the early stage of design and weight reduction by numerical example.

A Study on the Dynamic Response Analysis of Shell Structure with Impulsive Load by Reanalysis Technique (재해석 기법에 의한 충격 하중을 받는 쉘 구조물의 동적 응답 해석에 관한 연구)

  • 배동명
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.2
    • /
    • pp.132-151
    • /
    • 1993
  • The proposed method in this paper. termed the substructural reanalysis technique, utilizes the computational merits of the component mode synthesis technique and of reanalysis technique for the design sensitivities of the dynamic characteristics of substructurally combined structure. It is shown that the dynamic characteristics of the entire structure can be obtained by synthesizing the substructural eigensolution and the characteristics of the eigensolution for the design variables of the modifiable substructure. In this paper , the characteristics of the eigenvalue problems obtained by this proposed method are compared to exact eigensolution in terms of accuracy and computational efficiency. and the advantage of this proposed method as compared to the direct application of the whole structure and experimental results is demonstrated through examples of numerical calculation for the dynamic characteristics (natural frequencies and mode shapes) of a flexible vibration of thin cylinderical shell with branch shell under 2-end fixed positions, boundary condition. Thin cylinderical shell of overall length 1280mm, external diameter 360mm, thickness 3mm with branch shell is made of mild steel. The load condition for dynamic response in this paper is impulsive load of which magnitude is 10kgf, which have short duration of 0.1 sec. and time interval applied to calculate. $\Delta$T is 1.0$\times$10 super(-4) seconds.

  • PDF

Structural Optimization Using Equivalent Static Loads and Substructure Synthesis Method (등가정하중법과 부분구조합성법을 이용한 구조최적설계)

  • Choi, Wook Han;Na, Yoo Sang;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.823-830
    • /
    • 2015
  • Structural optimization pursues improved performance of structures. Nowadays, structural optimization is applied to the design of huge and complex structures such as an airplane. As the number of the finite elements is increased, the analysis solution becomes more accurate. However, the design cost using the finite element model is significantly increased. The component mode synthesis method that is using the substructure synthesis method is frequently employed in order to keep the accuracy and reduce the cost. A new design method for structural optimization is proposed to reduce the design cost and to consider the dynamic effect of the structure. The proposed method reduces the design cost by applying the equivalent static loads on the design domain. An example of linear dynamic response optimization is solved and the efficiency of the proposed method is demonstrated.

Dynamic Response Analysis of a Flexible Rotor During Impact on Backup Bearings (탄성 로터의 백업베어링 충돌 시 동적 응답 해석)

  • Park, K.J.;Bae, Y.C.
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.22-28
    • /
    • 2012
  • Active magnetic bearings(AMBs) present a technology which has many advantages compared to traditional bearing concepts. However, they require backup bearings in order to prevent damages in the event of a system failure. In this study, the dynamics of an AMB supported rotor during impact on backup bearings is studied employing a detailed simulation model. The backup bearings are modeled using an accurate ball bearing model, and the model for a flexible rotor system is described using the finite element approach with the component mode synthesis. Not only the influence of the support stiffness, clearance and friction coefficient on the rotor orbit, but also bearing load are compared for various rotor system parameters. Comparing these results it is shown that the optimum backup bearing system can be applicable for a specific rotor system.

Non-Linear Vibration Analysis of Mechanical Structures Using Component Mode Synthesis (부분구조합성법을 이용한 기계구조물의 비선형진동해석)

  • Kim, Jin-Wook;Iwatsubo, T.;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.370-375
    • /
    • 1996
  • 부분구조합성법의 하나인 구분모드합성법을 이용하여, 비선형 진동해석을 행하는 새로운 방법을 제안하였다. 제안하는 방법은 비선형 운동방정식에 섭동법을 이용하여 미소변동량에 관하여 정리한 각 차수의 운동방정식에 구분모드합성법을 적용하였다. 여기서 1차의 운동방정식의 외력항은 0차의 변위로 표현하는 것에 의해 각차의 운동방정식을 풀었다. 또한, 제안한 방법을 이용하여 문형구조모델의 비선형 강제진동 시각역응답을 구하고, 그 계산결과에 관해서 검토했다. 그 결과, 본 해석방법을 특히 감쇠가 없는 경우에 있어서 비선형이 실현되고 있는 것이 확인되었다.

  • PDF