• 제목/요약/키워드: Complex-contaminated soil

검색결과 69건 처리시간 0.022초

토양 내 복합유종에 의한 오염 해석 연구 (Interpretation of Contaminated Soil by Complex Oil)

  • 임영관;김정민;김종렬;하종한
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권1호
    • /
    • pp.13-17
    • /
    • 2017
  • Over 30% of domestic soil contamination has occurred via petroleum products and complex oil. Moreover, contamination by complex oil is more intense than it is by a single petroleum product species. In this study, we analyzed sectional TPH (total petroleum hydrocarbon) pattern and sectional ratio of current domestically distributed petroleum products, such as kerosene, diesel, bunker C, and lubricant and complex oils, to determine pollution characteristics of the soil. In the TPH pattern, kerosene, which is a light distillate, had an early retention time, and lubricant oil, which is a heavy distillate, had a late retention time in the gas chromatogram. In addition, we obtained a complexly contaminated soil via diesel and lubricant oil from the Navy and inspected it for its ratio of complex oil species. The inspection results showed that this soil was contaminated with 85% diesel and 15% lubricant oil. The method developed in this study could be used to determine complex petroleum sources and ratios at sites with accidentally contaminated soil.

간접열탈착방식을 이용한 원유오염토양 정화효율 평가 (The Study of Crude Oil Contaminated Soil Remediation by Indirect Thermal Desorption)

  • 이인;김종성;정태양;오승택;김국진
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권3호
    • /
    • pp.14-20
    • /
    • 2016
  • Remediation of crude oil contaminated soil is complicate and hard to apply traditional methods because of its persistency, durability, and high viscosity. Therefore, in this study, the efficiency of crude oil contaminated soil remediation was tested by developing a pilot-scale thermal desorption system using the indirect heating method with an exhaust gas treatment. Under optimal condition drawed by temperature and retention time, the remedial efficiency of crude oil contaminated soil and treatability of exhaust gas were analyzed. Total Petroleum Hydrocarbon (TPH) concentration of crude oil contaminated soil was decreased to 69.7 mg/kg on average and the remedial efficiency was measured at 99.60%. Through the exhaust gas, 86.0% of Volatile Organic Compounds (VOC) was degraded and 97.16% of complex malodor was reduced under the suggested optimum operation condition. This study provides important basic data to be useful in scaling up of the indirect thermal desorption system for the remediation of crude oil contaminated soil.

TRPHs - 중금속 복합오염토양의 동시 처리를 위한 과황산 산화 - 구연산 세척 혼성공정 개발 (A Continuous Process of Persulfate Oxidation and Citric acid Washing for the Treatment of Complex-Contaminated Soil Containing Total Recoverable Petroleum Hydrocarbons and Heavy Metals)

  • 윤나경;최지연;신원식
    • 한국환경과학회지
    • /
    • 제27권1호
    • /
    • pp.1-10
    • /
    • 2018
  • A continuous process of persulfate oxidation and citric acid washing was investigated for ex-situ remediation of complex contaminated soil containing total recoverable petroleum hydrocarbons (TRPHs) and heavy metals (Cu, Pb, and Zn). The batch experiment results showed that TRPHs could be degraded by $Fe^{2+}$ activated persulfate oxidation and that heavy metals could be removed by washing with citric acid. For efficient remediation of the complex contaminated soil, two-stage and three-stage processes were evaluated. Removal efficiency of the two-stage process (persulfate oxidation - citric acid washing) was 83% for TRPHs and 49%, 53%, 24% for Cu, Zn, and Pb, respectively. To improve the removal efficiency, a three-stage process was also tested; case A) water washing - persulfate oxidation - citirc acid washing and case B) persulfate oxidation - citric acid washing (1) - citric acid washing (2). In case A, 63% of TRPHs, 73% of Cu, 60% of Zn, and 55% of Pb were removed, while the removal efficiencies of TRPHs, Cu, Pb, and Zn were 24%, 68%, 62%, and 59% in case B, respectively. The results indicated that case A was better than case B. The three-stage process was more effective than the two-stage process for the remediation of complex-contaminated soil in therms of overall removal efficiency.

아연 또는 비소와 경유로 오염된 토양의 복합정화공법 개발 (Development of Hybrid Remediation Method for Contaminated Soils with Zinc or Arsenic and Diesel)

  • 김혜영;박정훈
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제15권4호
    • /
    • pp.13-20
    • /
    • 2010
  • The purpose of this study was to develope the remediation method of contaminated soils with metals and petroleum. The diesel degrading strain was isolated and identified from the soil contaminated by petroleum at industrial sites. Diesel biodegradation experiment was performed by diesel degrading bacteria in both solution and soil slurry. Contaminated soils by Zn or As and diesel were treated consecutively by steam-vapor extraction, biodegradation, and acid washing. The strain was identified as Pseudomonas aeruginosa, and named as Pseudomonas aeruginosa TPH1. The optimal culture conditions of TPH1 were $20^{\circ}C$ and pH 7.0, 3% of diesel concentration. Biodegradation of diesel was performed using the separated strain in liquid medium, and 63% of diesel was degraded in 72 hours. And 52% of diesel was removed in the tested soils. In the treatment of contaminated soils with diesel and Zn or As, 29% ~ 44% of diesel was reduced by steamvapor extraction, 60% ~ 71% of diesel was removed after biodegradation. 47% of Zn and 96% of As were removed after acid(mixture of sulfuric and oxalic acids) washing. It is recommended that consecutive treatment method of steam-vapor extraction, biodegradation and acid washing is effective for remediation of complex contaminated soils with metals and petroleum.

세정제에 의한 복합오염토양으로부터의 중질유 및 중금속 탈착 특성 (Desorption of Heavy Petroleum Oils and Heavy Metals from Soils by Flushing Agents)

  • 윤성미;김길란;임희준;김한승
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권3호
    • /
    • pp.94-103
    • /
    • 2014
  • In this study washing efficiency and desorption isotherms for heavy petroleum oil (HPO), Zn, and Pb bound to complex contaminated soils were examined using various soil flushing agents. Sodium dodecyl sulfate (SDS), methanol, ethylene diamine tetraacetic acid (EDTA), and citric acid were selected as soil flushing agents. 3% (w/v) and 4% SDS showed the highest removal efficiency for HPO, but the difference was not statistically significant (p > 0.05). Thus, 3% SDS was chosen as the best soil flushing agent for HPO. In the case of heavy metals, 0.1-M EDTA showed the highest removal efficiencies. But 0.05-M citric acid was selected due to its economic and eco-friendly strengths. The desorption isotherms obtained using Freundlich and Langmuir models indicated that the maximum desorption characteristics ($K_F$ and $Q_{max}$) of HPO with 4% SDS and 90% methanol and heavy metals with 0.1-M EDTA and 0.1-M citric acid, respectively, were markedly lower than in other cases. In addition, when 4% SDS and 90% methanol were used for HPO in the range of $C_e$ higher than 600 mg/L, and when 0.1M citric acid and 0.1M EDTA were used for Zn and Pb in the range of $C_e$ higher than 300 and 100 mg/L, respectively, the distribution constant converged to certain levels. Thus, constant values of $K_U$ and $K_L$ were determined. It was found that these constants represent the maximum desorption capacity and they can be used as distribution coefficients of desorption equilibrium for the flushing agents. The results of this study provided fundamental information for the selection of the best agents as well as for the process design and operation of soil washing/soil flushing of complex contaminated soils.

복합유류 토양오염에 따른 유종 해석 (The Interpretation of Petroleum Species from Contaminated Soil by Complex Oil)

  • 임영관;김지연;김완식;이정민
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제24권1호
    • /
    • pp.17-23
    • /
    • 2019
  • Clean soil environment is of crucial importance to sustain lives of ecosystem and humans. With rapid industrialization, there has been a great increase of soil contamination by accidental releases of petroleum products. In general, soil remediation is an expensive and time-consuming process as compared to cleanup of water and air. Moreover, determining the source and responsible parties of soil pollution often turns into legal conflicts and that further delay the cleanup process of contaminated sites. In practice, total petroleum hydrocarbon (TPH) analysis has been employed to determine the petroleum species and to track down the responsible polluters. However, this approach often suffers from differentiating similar TPH species. In this study, we analyzed TPH chromatogram patterns of 24 domestic petroleum products in specific carbon ranges (${\sim}C_{10}$, $C_{10}-C_{12}$, $C_{12}-C_{36}$, and $C_{36}{\sim}$) and the fractional changes of THP ratio in the mixture products of gasoline, kerosene and diesel. The proposed TPH analysis method in this study could serve as a useful tool to better analyze the petroleum species in soils contaminated with complex oil mixtures, and ultimately be used to identify the polluters of soil.

염소화페놀 오염토양에서 분리한 Pentachlorophenol 분해균주의 특성 (Characterization of PCP-degrading Bacteria Isolated from PCP-contaminated Soils)

  • 이성기;윤병대;권기석;오희목
    • 한국토양환경학회지
    • /
    • 제1권1호
    • /
    • pp.39-46
    • /
    • 1996
  • 본 연구는 염소화페놀 오염토양을 효과적으로 정화할 수 있는 bioremediation기술 개발을 위하여 자연계로부터 염소화 페놀화합물 분해 미생물을 탐색하고, 토양중의 pentachlorophenol(PCP, 오염소화 페놀)에 대한 분석기술을 확립하였으며, 토양에서 분리한 10 종의 PCP 분해균주들에 대한 특성을 조사하였다. 전국 각지에서 채집한 15개의 토양시료를 분석한 결과 인천공단부근의 1 site에서 50-100$mu\textrm{g}$/g wet soil의 PCP가 검출되었다. 토양시료에서 분리한 우량균주들에 대한 PCP 분해능과 균체성장을 조사하였을 때,500-1,000mg/ι의 PCP 분해에 소요되는 시간과 분해정도는 균주에 따라 변화하였으며, Bul 균주의 경우 90%의 PCP감소에 216시간이 소요되었다 특히, Bu34 균주는 4,000mg/ι의 PCP를 분해하는 초강력세균으로 Pseudomonas putida Bu34로 동정되었다. 이와 같이 PCP오염현장에서 분리된 우수한 균주는 PCP오염지의 bioremediation에 매우 효과적으로 사용될 수 있을 것이다.

  • PDF

Effect of C/N Ratio on Composting Treatment of TNT-Contaminated Soil

  • In, Byung-Hoon;Park, Joon-Seok;NamKoong, Wan
    • 한국환경보건학회지
    • /
    • 제32권6호
    • /
    • pp.578-584
    • /
    • 2006
  • This research was conducted to estimate the effect of C/N ratio control on composting of TNT (2,4,6 trinitrotoluene)-contaminated soil. Glucose or acetone was selected to control C/N ratio of the contaminated soil. The C/N ratios of the controlled experiment and no controlled one were 26.0 and 6.6, respectively. During 45days, the degradation efficiency (96.0 or 91.8%) of acetone or glucose C/N ratio controlled soil was higher than that (78.4%) of no C/N ratio controlled case. The first order degradation rate constant of glucose or acetone C/N ratio control was 0.0641 or 0.0820/day. This constant was over twice 0.0356/day of no C/N ratio control. The C/N ratio control with glucose or acetone also showed a rather high $CO_2$ evolution than that without C/N ratio control. It was proven that C/N ratio control for composting of TNT-contaminated soil improved the treatment efficiency.

유류오염토양이 식물식생에 미치는 영향에 관한 연구 (A Study on Effects of Oil Contaminated Soil on the Growth of Plant)

  • 최민주;김주영;김정훈;최상일
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제15권1호
    • /
    • pp.50-56
    • /
    • 2010
  • Oil contamination soil has been one of the most environmental social issues for decades in the inside and outside of country. The law of soil environmental preservation was carried out in the 1990s and the government controlled not only soil environment management and the remediation of contaminated soil but also promoted the development of remedial technology and cleanup business of contaminated soil by national policy. In addition to agriculture areas, the main oil contaminated sites are a gas station, oil reservoir, petro-chemical complex, site of railway carriage base and military camp. The contamination-frequency of agriculture area and effect sites are low but it has significantly important area on account of producing food for human beings. Therefore, we should be concerned about oil contamination damage of agriculture area. The oil contamination damage of agriculture area influenced drop of birth and breeding since the oil directly adheres to seeds and farm products even diffusion of contaminated soil to cultivation area. The studies of the crops and the food vegetation has not enough detailed data caused by the incident of oil contamination. This study investigated the effect of oil in germination and growth of selected plant seeds. In this study, we try to verify whether the oil contamination by accidents on farmland influenced the damage of farm produce and the mutual relation both oil contaminated soil or the vegetation of crops. The impact of oil on plant development was followed by phytotoxicity assessments. The plants exhibited visual symptoms of stress, growth reduction and perturbations in developmental parameters. The increase of the degree of pollution induced more marked effects in plants, likely because of the physical effects of oil. The relationships between the phytotoxicity contents of plants and growth reduction suggest a chemical toxicity of fuel oil. In addition, while cleaned up the contaminated soil under the standard of contaminated soil we examined it was suitable for region standard and it may have practical possibility for fill material of construction of afforestation and molding soil of landfill.

현장 미생물을 이용한 생물학적 복합토양정화공정에 관한 연구 (A Biological Complex Soil Treatment Process Using Selected Soil Bacterial Strains)

  • 차민환;이한욱;박재우
    • 한국지반환경공학회 논문집
    • /
    • 제11권5호
    • /
    • pp.5-13
    • /
    • 2010
  • 본 연구는 생물학적 지상처리 토양정화공정을 기본으로 생물반응기, 롤형 접촉산화장치(rolled pipe type of contact oxidation system, RPS), 화학처리장치의 처리과정을 통해 유류, 중금속, 영양염류로 오염된 토양 및 지하수를 동시에 정화 복원할 수 있는 생물학적 복합토양정화공정을 개발 검증하고자 실시하였다. 실험을 통해 현장 토양 중에 있는 토양정화효율이 우수한 5종의 미생물을 분리 선발하였고, 토양으로부터 유류를 효과적으로 분리하기 위한 계면활성제로는 Anion과 Nonion계 복합제가 가장 우수한 것으로 확인되었는데, 오염된 토양에 계면활성제를 처리한 후 선발된 미생물을 혼합해 적용하는 것이 가장 효율적인 것으로 나타났다. 토양정화조를 이용해 석유계총탄화수소(Total Petroleum hydrocarbon, TPH)로 오염된 토양을 처리한 결과, 5,000mg/L 내외의 저농도 오염시 28일간 90.0%, 10,000mg/L 이상의 고농도 오염시 81일간 90.7%의 처리효율을 나타냈으며, 토양정화조에서 배출된 침출수를 생물반응기로 1차 처리하고 롤형 접촉산화장치로 2차 처리한 결과, BOD 90.6%, $COD_{Mn}$ 73.0%, SS 91.9%, T-N 73.8%, T-P 65.7%의 평균 처리효율을 얻을 수 있었다. 이후 응집제를 통한 화학처리장치를 적용하여 중금속을 99.0% 이상 제거하였다.