• Title/Summary/Keyword: Complex vector

Search Result 618, Processing Time 0.024 seconds

Forced Vibration Analysis of Lattice Type Structure by Transfer Stiffness Coefficient Method (전달강성계수법에 의한 격자형 구조물의 강제진동 해석)

  • 문덕홍;최명수
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.949-956
    • /
    • 1998
  • Complex and large lattice type structures are frequently used in design of bridge, tower, crane and aerospace structures. In general, in order to analyze these structures we have used the finite element method(FEM). This method is the most widely used and powerful method for structural analysis lately. However, it is necessary to use a large amount of computer memory and computational time because the FEM requires many degrees of freedom for solving dynamic problems exactly for these complex and large structures. For analyzing these structures on a personal computer, the authors developed the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficient matrix which is related to force and displacement vector at each node. And we suggested TSCM for free vibration analysis of complex and large lattice type structures in the previous report. In this paper, we formulate forced vibration analysis algorithm for complex and large lattice type structures using extened TSCM. And we confirmed the validity of TSCM through computational results by the FEM and TSCM, and experimental results for lattice type structures with harmonic excitation.

  • PDF

Sharing a Large Secret Image Using Meaningful Shadows Based on VQ and Inpainting

  • Wang, Zhi-Hui;Chen, Kuo-Nan;Chang, Chin-Chen;Qin, Chuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.5170-5188
    • /
    • 2015
  • This paper proposes a novel progressive secret image-hiding scheme based on the inpainting technique, the vector quantization technique (VQ) and the exploiting modification direction (EMD) technique. The proposed scheme first divides the secret image into non-overlapping blocks and categorizes the blocks into two groups: complex and smooth. The blocks in the complex group are compressed by VQ with PCA sorted codebook to obtain the VQ index table. Instead of embedding the original secret image, the proposed method progressively embeds the VQ index table into the cover images by using the EMD technique. After the receiver recovers the complex parts of the secret image by decoding the VQ index table from the shadow images, the smooth parts can be reconstructed by using the inpainting technique based on the content of the complex parts. The experimental results demonstrate that the proposed scheme not only has the advantage of progressive data hiding, which involves more shadow images joining to recover the secret image so as to produce a higher quality steganography image, but also can achieve high hiding capacity with acceptable recovered image quality.

CURVES ORTHOGONAL TO A VECTOR FIELD IN EUCLIDEAN SPACES

  • da Silva, Luiz C.B.;Ferreira, Gilson S. Jr.
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1485-1500
    • /
    • 2021
  • A curve is rectifying if it lies on a moving hyperplane orthogonal to its curvature vector. In this work, we extend the main result of [Chen 2017, Tamkang J. Math. 48, 209] to any space dimension: we prove that rectifying curves are geodesics on hypercones. We later use this association to characterize rectifying curves that are also slant helices in three-dimensional space as geodesics of circular cones. In addition, we consider curves that lie on a moving hyperplane normal to (i) one of the normal vector fields of the Frenet frame and to (ii) a rotation minimizing vector field along the curve. The former class is characterized in terms of the constancy of a certain vector field normal to the curve, while the latter contains spherical and plane curves. Finally, we establish a formal mapping between rectifying curves in an (m + 2)-dimensional space and spherical curves in an (m + 1)-dimensional space.

Double-Objective Finite Control Set Model-Free Predictive Control with DSVM for PMSM Drives

  • Zhao, Beishi;Li, Hongmei;Mao, Jingkui
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.168-178
    • /
    • 2019
  • Discrete space vector modulation (DSVM) is an effective method to improve the steady-state performance of the finite control set predictive control for permanent magnet synchronous motor drive systems. However, it requires complex computations due to the presence of numerous virtual voltage vectors. This paper proposes an improved finite control set model-free predictive control using DSVM to reduce the computational burden. First, model-free deadbeat current control is used to generate the reference voltage vector. Then, based on the principle that the voltage vector closest to the reference voltage vector minimizes the cost function, the optimal voltage vector is obtained in an effective way which avoids evaluation of the cost function. Additionally, in order to implement double-objective control, a two-level decisional cost function is designed to sequentially reduce the stator currents tracking error and the inverter switching frequency. The effectiveness of the proposed control is validated based on experimental tests.

COMMON FIXED POINTS FOR TWO MAPPINGS WITH EXPANSIVE PROPERTIES ON COMPLEX VALUED METRIC SPACES

  • Piao, Yong-Jie
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.1
    • /
    • pp.13-28
    • /
    • 2015
  • In this paper, we use two mappings satisfying certain expansive conditions to construct convergent sequences in complex valued metric spaces, and then we prove that the limits of the convergent sequences are the points of coincidence or common fixed points for the two mappings. The main theorems in this paper are the generalizations and improvements of the corresponding results in real metric spaces, cone metric spaces and topological vector space-valued cone metric spaces.

HOPF HYPERSURFACES IN COMPLEX TWO-PLANE GRASSMANNIANS WITH LIE PARALLEL NORMAL JACOBI OPERATOR

  • Jeong, Im-Soon;Lee, Hyun-Jin;Suh, Young-Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.427-444
    • /
    • 2011
  • In this paper we give some non-existence theorems for Hopf hypersurfaces in the complex two-plane Grassmannian $G_2(\mathbb{C}^{m+2})$ with Lie parallel normal Jacobi operator $\bar{R}_N$ and totally geodesic D and $D^{\bot}$ components of the Reeb flow.

Structure Eigenvectors of the Ricci Tensor in a Real Hypersurface of a Complex Projective Space

  • Li, Chunji;Ki, U-Hang
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.463-476
    • /
    • 2006
  • It is known that there are no real hypersurfaces with parallel Ricci tensor in a nonflat complex space form ([6], [9]). In this paper we investigate real hypersurfaces in a complex projective space $P_n\mathbb{C}$ using some conditions of the Ricci tensor S which are weaker than ${\nabla}S=0$. We characterize Hopf hypersurfaces of $P_n\mathbb{C}$.

  • PDF

The Short Time Spectra Analysis System Using The Complex LMS Algorithm and It's Applications

  • Umemoto, Toshitaka;Fujisawa, Shoichiro;Yoshida, Takeo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.58-63
    • /
    • 1998
  • B.Widrow established fundamental relations between the least-mean-square (LMS) algorithm and the digital Fourier transform[1]. By extending these relations, we proposed the short time spectra analysis system using the LMS algorithm[2]. In that paper, we used the normal LMS algorithm on the thought of dealing with only real analytical signal. This algorithm minimizes the real mean-square by recursively altering the complex weight vector at each sampling instant. But, the short time spectra analysis sometimes deals with the complex signal that is outputted from complex analog filter. So, in order to optimize and develop this methods, furthermore it is necessary to derive an algorithm for the complex analytical signal. In this paper, we first discuss the new adaptive system for the spectra analysis using the complex LMS algorithm and then derive convergence condition, time constant of coefficient adjustment and frequency resolution by extending the discussion. Finally, the effectiveness of the proposed method is experimentally demonstrated by applying it to the measurement of transfer performance on complex analog filter.

  • PDF

Real-Time Implementation of the EHSX Speech Coder Using a Floating Point DSP (부동 소수점 DSP를 이용한 4kbps EHSX 음성 부호화기의 실시간 구현)

  • 이인성;박동원;김정호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.420-427
    • /
    • 2004
  • This paper presents real time implementation of 4kbps EHSX (Enhanced Harmonic Stochastic Excitation) speech coder that combines the harmonic vector excitation coding with time-separated transition coding. The harmonic vector excitation coding uses the harmonic excitation coding for voiced frames and used the vector excitation coding with the structure of analysis-by-synthesis for unvoiced frames, respectively. For transition frames mixed with voiced and unvoiced signal, we use the time-separated transition coding. In this paper. we present the optimization methods of implementation speech coder on the EMS320C6701/sup (R)/ DSP. To reduce the complex for real-time implementation. we perform the optimization method in algorithm by replacing the complex sinusoidal synthesis method with IFFT. and we apply fully pipelines hand assembly coding after converting it from floating source to fixed source. To generate a more efficient code. we also make use or the available EMS320C6701/sup (R)/ resources such as Fastest67x library and memory organization.

Salient Motion Information Detection Method Using Weighted Subtraction Image and Motion Vector (가중치 차 영상과 움직임 벡터를 이용한 두드러진 움직임 정보 검출 방법)

  • Kim, Sun-Woo;Ha, Tae-Ryeong;Park, Chun-Bae;Choi, Yeon-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.4
    • /
    • pp.779-785
    • /
    • 2007
  • Moving object detection is very important for video surveillance in modern days. In special case, we can categorize motions into two types-salient and non-salient motion. In this paper, we first calculate temporal difference image for extract moving objects and adapt to dynamic environments and next, we also propose a new algorithm to detect salient motion information in complex environment by combining temporal difference image and binary block image which is calculated by motion vector using the newest MPEG-4 and EPZS, and it is very effective to detect objects in a complex environment that many various motions are mixed.