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COMMON FIXED POINTS FOR TWO MAPPINGS
WITH EXPANSIVE PROPERTIES ON COMPLEX

VALUED METRIC SPACES

Yong-Jie Piao*

Abstract. In this paper, we use two mappings satisfying certain
expansive conditions to construct convergent sequences in complex
valued metric spaces, and then we prove that the limits of the con-
vergent sequences are the points of coincidence or common fixed
points for the two mappings. The main theorems in this paper are
the generalizations and improvements of the corresponding results
in real metric spaces, cone metric spaces and topological vector
space-valued cone metric spaces.

1. Introduction

Real metric spaces have been widely generalized and improved. For
example, cone metric spaces ([7]) and topological vector space-valued
cone metric spaces([3]). A number of authors discussed and obtained
some fixed point and common fixed point theorems in these spaces,
greatly generalized and improved some corresponding results. Recently,
Azam et al. ([1]) introduced a partial order ≤ on the set C of complex
numbers, used the idea in ([3, 7]) to define a complex metric d on a
nonempty set X and a complex metric space (X, d), and gave coincidence
point theorems and common fixed point theorems for two mappings
satisfying a contractive type condition. The authors in ([11, 14, 15])
further generalized and improved the corresponding results in ([1]).

In what follows, we recall some notations and definitions that will be
utilized in our subsequent discussion.
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Let C be the set of complex numbers and z1, z2 ∈ C. Define a partial
order ≤ on C as follows:

z1 ≤ z2 ⇔ Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2).

Consequently, z1 ≤ z2 if and only if one of the following conditions is
satisfied:
(C1) Re(z1) = Rez2, Imz1 = Imz2;
(C2) Re(z1) < Rez2, Imz1 = Imz2;
(C3) Re(z1) = Rez2, Imz1 < Imz2;
(C4) Re(z1) < Rez2, Imz1 < Imz2.
In particular, we write z1 < z2 if only (C4) is satisfied.

Obviously, the following statements hold:
(i) If b ≥ a ≥ 0, then az ≤ bz for any z ∈ C with 0 ≤ z;
(ii) if 0 ≤ z1 < z2, then |z1| < |z2|;
(iii) if z1 ≤ z2 and z2 < z3, then z1 < z3;
(iv) if z1 ≤ z2 and z ∈ C, then z + z1 ≤ z + z2.

Definition 1.1. ([1, 11, 14, 15]) Let X be a nonempty set. If a
mapping d : X ×X → C satisfies the following conditions:

(i) 0 ≤ d(x, y) for all x, y ∈ X, and d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z,∈ X.

Then d is called a complex valued metric on X and (X, d) is called a
complex valued metric space.

Example 1.2. ([14]) Let X = C. Define a mapping d : X ×X → C
as follows

d(z1, z2) = eik|z1 − z2|, ∀ z1, z2 ∈ X,

where k ∈ R. Then (X, d) is a complex valued metric space.

Example 1.3. Let X = {a, b, c}. Define a mapping d : X ×X → C
by

d(a, a) = d(b, b) = d(c, c) = 0,
d(a, b) = d(b, a) = 3+4i, d(a, c) = d(c, a) = 2+3i, d(b, c) = d(c, b) = 4+5i.
Obviously, (X, d) is a complex valued metric space.

Definition 1.4. ([1, 11, 14, 15]) Let (X, d) be a complex valued
metric space, {xn}n≥1 a sequence in X and x ∈ X.

(i) If for any c ∈ C with 0 < c, there exists n0 ∈ N such that d(xn, x) <
c for all n > n0, then {xn} is said to converge to x and x is the
limit point of {xn}.We denote this by limn→∞ xn = x or xn → x
as n →∞.
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(ii) If for any c ∈ C with 0 < c, there exists n0 ∈ N such that for all
n > n0 and any m ∈ N, d(xn, xn+m) < c, then {xn} is said to be
a Cauchy sequence.

(iii) If every Cauchy sequence in X is convergent, then X is said to be
complete.

Definition 1.5. Let (X, d) and (Y, ρ) be two complex valued metric
spaces, f : X → Y a mapping and x∗ ∈ X. f is said to be continuous
at x∗ if for each ε ∈ C with 0 < ε, there exists δ ∈ C with 0 < δ such
that d(x, x∗) < δ implies ρ(fx, fx∗) < ε.

Definition 1.6. ([2]) Let X be a nonempty set, f, g : X → X two
mappings. f and g are called weakly compatible if x ∈ X and fx = gx,
then fgx = gfx.

The following definitions of three different expansive maps can be
found in ([17]): Let X be a real metric space and T : X → X a mapping.

If there exists a constant number a > 1 such that for each x, y ∈ X,
d(Tx, Ty) ≥ ad(x, y), then T is said to be a I-expansive mapping.

If there exist non-negative real numbers a, b, c with a+ b+ c > 1 such
that for each x, y ∈ X with x 6= y, d(Tx, Ty) ≥ ad(x, Tx) + bd(y, Ty) +
cd(x, y), then T is said to be a II-expansive mapping.

If there exists h > 1 such that for each x, y ∈ X, d(Tx, Ty) ≥
h min{d(x, Tx), d(y, Ty), d(x, y)}, then T is said to be a III-expansive
mapping.

Wang, Li and Gao ([17]) obtained important fixed point theorems in
complete real metric spaces for the above expansive type maps, and the
authors in ([5, 6, 8, 9, 12, 13]) obtained coincidence point and common
fixed point theorems for two maps with expansive conditions in real
metric spaces, cone metric spaces and CMTS([4, 16]) respectively, widely
generalized and improved the corresponding results in ([17]).

In this paper, we consider some expansive type conditions which are
the generalizations of three expansive definitions([17]) defined in real
metric spaces, and then discuss the existence problems of coincidence
point and common fixed point for two mappings. The obtained results
are the generalizations, improvements and new versions of the corre-
sponding conclusions in real metric spaces, cone metric spaces, topolog-
ical vector space valued cone metric spaces and CMTS.
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2. Basic lemmas

Now, we give some lemmas that will be utilized in our subsequent
discussion.

Lemma 2.1. ([1, 11, 14, 15]) Let {xn} be a sequence in a complex
valued metric space (X, d). Then {xn} is a Cauchy sequence if and only
if |d(xn, xn+m)| → 0 as n →∞, where m ∈ N.

Lemma 2.2. ([1, 11, 14, 15]) Let {xn} be a sequence in a complex
valued metric space (X, d). Then {xn} converges to x ∈ X if and only
if |d(xn, x)| → 0 as n →∞.

Lemma 2.3. Let (X, d) be a complex valued metric space, {xn} a
sequence in X. If {xn} is convergent, then its limit point is unique.

Proof. Suppose that {xn} has two limit points x and y. For any c ∈ C
with 0 < c, since xn → x and xn → y, there exist N1, N2 ∈ N such that
d(xn, x) < c

2 for all n > N1, and d(xn, y) < c
2 for all n > N2, hence for all

n > max{N1, N2}, d(x, y) ≤ d(xn, x) + d(xn, y) < c, so |d(x, y)| < |c|.
Since c is arbitrary, we obtain |d(x, y)| = 0, i.e., x = y. Therefore, the
limit point of {xn} is unique.

Lemma 2.4. If (X, d) is a complex valued metric space, {xn} con-
verges to x ∈ X, {yn} converges to y ∈ X. Then

lim
n→∞ d(xn, yn) = d(x, y); lim

n→∞ |d(xn, yn)| = |d(x, y)|.
In particular, for any fixed element z ∈ X, the following holds

lim
n→∞ d(xn, z) = d(x, z); lim

n→∞ |d(xn, z)| = |d(x, z)|.
Proof. Obviously, the following holds

d(xn, yn) ≤ d(xn, x)+d(x, y)+(y, yn) ⇒ d(xn, yn)−d(x, y) ≤ d(xn, x)+d(yn, y);

d(x, y) ≤ d(xn, x)+d(xn, yn)+d(yn, y) ⇒ −[d(xn, x)+d(yn, y)] ≤ d(xn, yn)−d(x, y).
Hence we obtain

−[d(xn, x) + d(yn, y)] ≤ [d(xn, yn)− d(x, y)] ≤ [d(xn, x) + d(yn, y)].

Let d(xn, x)+d(yn, y) = α+βi and d(xn, yn)−d(x, y) = δ+σi. Since
α, β ≥ 0, so |δ| ≤ |α| and |σ| ≤ |β|, hence |δ + σi| ≤ |α + βi|. Therefore

|d(xn, yn)− d(x, y)| ≤ |d(xn, x) + d(yn, y)|,
so∣∣|d(xn, yn)| − |d(x, y)|∣∣ ≤ |d(xn, yn)− d(x, y)|

≤ |d(xn, x) + d(yn, y)| ≤ |d(xn, x)|+ |d(yn, y)|.
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Since xn → x and yn → y, by Lemma 2.2, we have

lim
n→∞

∣∣|d(xn, yn)| − |d(x, y)|∣∣ = lim
n→∞ |d(xn, yn)− d(x, y)| = 0.

Hence

lim
n→∞ d(xn, yn) = d(x, y); lim

n→∞ |d(xn, yn)| = |d(x, y)|.

Lemma 2.5. Let (X, d) and (Y, ρ) be two complex valued metric
spaces and f : X → Y a mapping. Then f is continuous at x∗ ∈ X
if and only if xn → x∗ in X implies fxn → fx∗ in Y .

Proof. (⇒) Suppose that xn → x∗. For each ε ∈ C with 0 < ε, there
exists δ ∈ C with 0 < δ such that d(x, x∗) < δ implies ρ(fx, fx∗) < ε.
So for δ and xn → x∗, there exists N ∈ N such that d(xn, x∗) < δ as
n > N , hence ρ(fxn, fx∗) < ε as n > N , therefore fxn → fx∗.

(⇐) Suppose that f is not continuous at x∗, then there exists ε0 ∈ C
with 0 < ε0 such that for each δ ∈ C with 0 < δ, there exists xδ ∈ X
satisfying d(xδ, x

∗) < δ, but ρ(fxδ, fx∗) ≥ ε0. Fix δ, then for each
n ∈ N, 0 < δ

n . Hence for δ
n , there exists xn ∈ X such that d(xn, x∗) < δ

n ,
but ρ(fxn, fx∗) ≥ ε0, ∀ n ∈ N. Obviously, for each c ∈ C with 0 < c,
there exists N ∈ N such that δ

n < c as n > N , hence d(xn, x∗) < c as
n > N . This shows that xn → x∗. But ρ(fxn, fx∗) ≥ ε0, this implies
that fxn is not convergent to fx∗. The contradiction shows that f is
continuous at x∗.

Lemma 2.6. (Cauchy Principle) Let {xn} be a sequence in a complex
valued metric space (X, d). If there exists 0 ≤ h < 1 such that for all
n ∈ N,

d(xn+1, xn) ≤ h d(xn, xn−1).
Then {xn} is a Cauchy sequence.

Proof. By given conditions, we obtain

|d(xn+1, xn)| ≤ h |d(xn, xn−1)| ≤ · · · ≤ hn−1|d(x1, x2)|, ∀n = 1, 2, 3, · · · ,

hence, for all n,m ∈ N,

|d(xn, xn+m)| ≤ |d(xn, xn+1)|+ |d(xn+1, xn+2)|+ · · ·+ d(xn+m−1, xn+m)|
≤ (hn−1 + hn + hn+m−2)|d(x1, x2)|

≤ hn−1

1− h
|d(x1, x2)|.

So {xn} is a Cauchy sequence by Lemma 2.1.
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Lemma 2.7. ([10]) Let f, g : X → X be weakly compatible. If f
and g have a unique point of coincidence, that is, there exist an element
x ∈ X and a unique element w ∈ X satisfying w = fx = gx, then w is
the unique common fixed point of f and g. In this case, x is said to be
a coincidence point of f and g, w is said to be a point of coincidence of
f and g.

3. Common fixed point theorems

Theorem 3.1. Let (X, d) be a complex valued metric space, S, T :
X → X two mappings satisfying SX ⊂ TX. Suppose that for each
x, y ∈ X with x 6= y,

(3.1) d(Tx, Ty) ≥ α d(Sx, Tx) + β d(Sy, Ty) + γ d(Sx, Sy),

where α, β, γ ≥ 0. If (i) TX or SX is complete; (ii) α + β + γ > 1; (iii)
α < 1 or β < 1. Then S and T have a point of coincidence. Furthermore,
if α, β, γ ≥ 0 satisfy γ > 1 and α < 1 or β < 1, then S and T have a
unique point of coincidence. And if S and T are also weakly compatible,
then S and T have a unique common fixed point.

Proof. For any given x0 ∈ X, we can use the condition SX ⊂ TX to
construct two sequences {xn} and {yn} satisfying

yn = Sxn = Txn+1, ∀n = 0, 1, 2, · · · .

If there exists n satisfying xn = xn+1, then yn is the point of coinci-
dence of S and T . Hence we assume that

xn 6= xn+1, ∀ n = 1, 2, · · · .

Suppose that α < 1. Take x = xn, y = xn+1, then by (3.1),

d(Txn, Txn+1) ≥ α d(Sxn, Txn)+β d(Sxn+1, Txn+1)+γ d(Sxn, Sxn+1),

that is,

d(yn−1, yn) ≥ α d(yn, yn−1) + β d(yn+1, yn) + γ d(yn, yn+1),

hence

(3.2) d(yn, yn+1) ≤ 1− α

β + γ
d(yn−1, yn), ∀n = 1, 2, 3, · · · .

Suppose that β < 1. Take x = xn+1, y = xn, then by (3.1),

d(Txn+1, Txn) ≥ α d(Sxn+1, Txn+1)+β d(Sxn, Txn)+γ d(Sxn+1, Sxn),

that is

d(yn, yn−1) ≥ α d(yn+1, yn) + β d(yn, yn−1) + γ d(yn+1, yn),



Common fixed points for two mappings with expansive properties 19

hence

(3.3) d(yn, yn+1) ≤ 1− β

α + γ
d(yn−1, yn), ∀n = 1, 2, 3, · · · .

Combining (3.2), (3.3) and (ii), we obtain

(3.4) d(yn, yn+1) ≤ h d(yn−1, yn), ∀n = 1, 2, 3, · · · ,

where h = max{ 1−β
α+γ , 1−α

β+γ } < 1. This shows that {yn} is a Cauchy
sequence by Lemma 2.6.

Suppose that TX is complete. Since yn = Sxn = Txn+1 ∈ TX, there
exists z ∈ X such that yn → Tz as n →∞.

When α 6= 0, we take x = z, y = xn+1 and use (3.1) to obtain

d(Tz, Txn+1) ≥ α d(Sz, Tz) + β d(Sxn+1, Txn+1) + γ d(Sz, Sxn+1),

hence

d(Tz, yn) ≥ α d(Sz, Tz) + β d(yn+1, yn) + γ d(Sz, yn+1) ≥ α d(Sz, Tz),

so
|d(Tz, yn)| ≥ α |d(Sz, Tz)|.

Let n →∞, then |d(Sz, Tz)| = 0 by Lemma 2.4, hence Sz = Tz.
when β 6= 0, we take x = xn+1, y = z and use (3.1) to obtain

d(yn, T z) ≥ α d(yn+1, yn) + β d(Sz, Tz) + γ d(yn+1, Sz) ≥ β d(Sz, Tz),

hence
|d(yn, T z)| ≥ β |d(Sz, Tz)|.

Let n →∞, then |d(Sz, Tz)| = 0 by Lemma 2.4, hence Sz = Tz.
When γ 6= 0, we take x = xn+1, y = z and use (3.1) to obtain

d(yn, T z) ≥ α d(yn+1, yn) + β d(Sz, Tz) + γ d(yn+1, Sz) ≥ γ d(yn+1, Sz),

hence
|d(yn, T z)| ≥ γ |d(yn+1, Sz)|.

Let n →∞, then |d(Sz, Tz)| = 0 by Lemma 2.4, hence Sz = Tz.
So in any case, Tz = Sz holds. Let u = Tz = Sz, then u is a point

of coincidence of S and T .
Suppose that SX is complete. Since yn = Sxn ∈ SX ⊂ TX, there

exist z1, z2 ∈ X satisfying yn → Sz1 = Tz2. Hence we can similarly
obtain that Sz2 = Tz2, therefore S and T have a point of coincidence.

If α, β, γ satisfy γ > 1 and α < 1 or β < 1, then they also satisfy
(ii) and (iii), hence S and T have a point of coincidence u = Sz = Tz.
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Suppose that w = Sv = Tv is also a point of coincidence of S and T .
Let x = z, y = v, then by (3.1),

d(u, w) = d(Tz, Tv) ≥ α d(Sz, Tz) + β d(Sv, Tv) + γ d(Sz, Sv)

≥ γ d(Sz, Sv) = γ d(u,w),

hence d(u,w) = 0 since λ > 1. So u = w, i.e., u is the unique point of
coincidence of S and T . The last result follows from Lemma 2.7.

Remark 3.2. 1) If S = 1X , then the condition of Theorem 3.1 is
the II-expansive condition in ([17]), hence the condition of Theorem 3.1
generalizes the condition in ([17]). And Theorem 3.1 for case S = 1X is
a generalization of a fixed point theorem for a II-expansive mapping in
([17]).

2) Theorem 3.1 is the generalization and improvement of [[13], The-
orem 2.1] in complex valued metric spaces.

3) In Theorem 3.1, we not only give the existence of point of coinci-
dence for two mappings, but also give the sufficient condition of existence
of unique point of coincidence. On the other hand, in Theorem 3.1, we
discuss the unique existence of common fixed point, but other authors,
including the authors in [13], do not discuss the uniqueness.

Example 3.3. Consider the complex valued metric space (X, d) in
Example 1.3. Define two mappinggs T, S : X → X by

Ta = a, T b = c, T c = b, Sa = a, Sb = a, Sc = c.

Obviously, TX = X is complete, SX ⊂ TX and S and T are weakly
compatible. Take α = 1

16 , β = 2
16 , γ = 17

16 .

It is easy to check that

d(Ta, Tb) = 2 + 3i ≥ 1
16

0 +
2
16

(2 + 3i) +
17
16

0

= α d(Sa, Ta) + β d(Sb, T b) + γ d(Sa, Sb);

d(Ta, Tc) = 3 + 4i ≥ 1
16

0 +
2
16

(4 + 5i) +
17
16

(2 + 3i)

= α d(Sa, Ta) + β d(Sc, T c) + γ d(Sa, Sc);

d(Tb, Ta) = 2 + 3i ≥ 1
16

(2 + 3i) +
2
16

0 +
17
16

0

= α d(Sb, T b) + β d(Sa, Ta) + γ d(Sb, Sa);
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d(Tb, T c) = 4 + 5i ≥ 1
16

(2 + 3i) +
2
16

(4 + 5i) +
17
16

(2 + 3i)

= α d(Sb, T b) + β d(Sc, Tc) + γ d(Sb, Sc);

d(Tc, Ta) = 3 + 4i ≥ 1
16

(4 + 5i) +
2
16

0 +
17
16

(2 + 3i)

= α d(Sc, T c) + β d(Sa, Ta) + γ d(Sc, Sa);

d(Tc, T b) = 4 + 5i ≥ 1
16

(4 + 5i) +
2
16

(2 + 3i) +
17
16

(2 + 3i)

= α d(Sc, T c) + β d(Sb, T b) + γ d(Sc, Sb).
Hence, T , S, α, β and γ satisfy all conditions of Theorem 3.1. So T and
S have a unique common fixed point. In fact, a is the unique common
fixed point of T and S.

Using Theorem 3.1, we can give following fixed point theorems.

Corollary 3.4. Let (X, d) be a complex valued metric space, S :
X → X a mapping. If for each x, y ∈ X with x 6= y,

d(x, y) ≥ α d(Sx, x) + β d(Sy, y) + γ d(Sx, Sy),

where α, β, γ ≥ 0. Suppose that (i) SX is complete; (ii) α + β + γ > 1;
(iii) α < 1 or β < 1. Then S has a fixed point. In particular, if γ > 1
and α < 1 or β < 1, then S has a unique fixed point.

Proof. Take T = 1X , then all conditions of Theorem 3.1 are satisfied.
Hence there exist u, z ∈ X such that u = Sz = Tz = z, therefore u is a
fixed point of S. The rest of the argument is similar to Theorem 3.1.

Corollary 3.5. Let (X, d) be a complex valued metric space, T :
X → X a mapping. Suppose that for each x, y ∈ X with x 6= y,

d(Tx, Ty) ≥ α d(T 2x, Tx) + β d(T 2y, Ty) + γ d(T 2x, T 2y),

where α, β, γ ≥ 0. If (i) TX is complete; (ii) α + β + γ > 1; (iii) α < 1
or β < 1. Then T has a fixed point. In particular, if γ > 1 and α < 1
or β < 1, then T has a unique fixed point.

Proof. Let S = T 2, then all conditions of Theorem 3.1 are satisfied,
hence there exist u, z ∈ X such that u = Tz = Sz = T 2z, so u = Tz
is a fixed point of T . Suppose that γ > 1 and v is a fixed point of T .
Let x = u, y = v, then we easily obtain d(u, v) ≥ γd(u, v) by the given
conditions, hence u = v, i.e., u is the unique fixed point of T .

Theorem 3.6. Let (X, d) be a complex valued metric space, S, T :
X → X two mappings satisfying SX ⊂ TX. If for each x, y ∈ X with
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x 6= y,

(3.5) d(Tx, Ty) + α d(Sx, Ty) + β d(Sy, Tx) ≥ γ d(Sx, Sy),

where α, β, γ ≥ 0. Suppose that (i) TX or SX is complete; (ii) 1+2α < γ
or 1+2β < γ. Then S and T have a point of coincidence. Furthermore,
if 1 + α + β < γ, then S and T have a unique point of coincidence. If S
and T are also weakly compatible, then S and T have a unique common
fixed point.

Proof. Just as Theorem 3.1, we construct {xn} and {yn} such that

yn = Sxn = Txn+1, xn 6= xn+1, ∀ n = 0, 1, 2, · · · .

Suppose that 1+2α < γ. Taking x = xn+2, y = xn+1 and using (3.5),
we obtain

d(yn+1, yn) + α d(yn+2, yn) ≥ γ d(yn+2, yn+1),

hence

d(yn+1, yn) + α [d(yn+2, yn+1) + d(yn+1, yn)] ≥ γ d(yn+2, yn+1).

So

(3.6) d(yn+2, yn+1) ≤ 1 + α

γ − α
d(yn+1, yn), ∀n = 0, 1, 2, · · · .

Suppose that 1+2β < γ. Taking x = xn+1, y = xn+2 and using (3.5),
we obtain

d(yn, yn+1) + β d(yn+2, yn) ≥ γ d(yn+1, yn+2),

hence

d(yn+1, yn) + β [d(yn+2, yn+1) + d(yn+1, yn)] ≥ γ d(yn+2, yn+1),

and so

(3.7) d(yn+2, yn+1) ≤ 1 + β

γ − β
d(yn+1, yn), ∀n = 0, 1, 2, · · · .

Let h = 1+α
γ−α or h = 1+β

γ−β , then 0 < h < 1. by (3.6) and (3.7),

(3.8) d(yn+2, yn+1) ≤ h d(yn+1, yn), ∀n = 0, 1, 2, · · · .

Hence {yn} is a Cauchy sequence by Lemma 2.6.
Suppose that TX is complete. Since yn = Sxn = Txn+1 ∈ TX, there

exists z ∈ X satisfying yn → Tz.
Suppose that 1+2β < γ. Taking x = xn+1, y = z and using (3.5), we

obtain

d(yn, T z) + α d(yn+1, T z) + β d(Sz, yn) ≥ γ d(yn+1, Sz), ∀n = 1, 2, · · · ,
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hence

|d(yn, T z)|+α |d(yn+1, T z)|+β |d(Sz, yn)| ≥ γ |d(yn+1, Sz)|, ∀n = 1, 2, · · · .

Let n →∞, then by Lemma 2.4, we have

β |d(Sz, Tz)| ≥ γ |d(Tz, Sz)|.
Hence Sz = Tz since β < γ. Similarly, we can also obtain that Sz = Tz
for the case 1 + 2α < γ. Denote u = Tz = Sz, then u is a point of
coincidence of S and T .

Suppose that SX is complete. Since yn = Sxn ∈ SX ⊂ TX, there
exist z1, z2 ∈ X such that yn → Sz1 = Tz2, then we can similarly prove
that Sz2 = Tz2, so S and T have a point of coincidence.

If 1 + α + β < γ, then 1 + 2α < γ or 1 + 2β < γ, hence S and T have
a point of coincidence. Suppose that w = Sv = Tv is also a point of
coincidence of S and T . Taking x = z, y = v and using (3.5), we obtain

d(Tz, Tv) + α d(Sz, Tv) + β d(Sv, Tz) ≥ γ d(Sz, Sv),

i.e.,
(1 + α + β)d(u,w) ≥ γd(u,w).

Hence d(u,w) = 0, i.e., u = w. So u is the unique point of coincidence
of S and T . The last result follows from Lemma 2.7.

Example 3.7. Consider the space (X, d) and two mappings S and T
in Example 3.3. Let α = β = 0.1, γ = 1.3, then 1+α+β = 1.2 < 1.3 = γ.
By careful calculations, one find the fact all the conditions of Theorem
3.6 are fulfilled. So S and T have a unique common fixed point. In fact,
a is the unique common fixed point of S and T .

Using Theorem 3.6, we give the following fixed point results.

Corollary 3.8. Let (X, d) be a complete complex valued metric
space, T : X → X an onto mapping. Suppose that for each x, y ∈ X
with x 6= y,

d(Tx, Ty) + α d(x, Ty) + β d(y, Tx) ≥ γ d(x, y),

where α, β, γ ≥ 0. If 1 + α + β < γ, then T has a unique fixed point.

Corollary 3.9. Let (X, d) be a complex valued metric space, S :
X → X a mapping. Suppose that for each x, y ∈ X with x 6= y,

d(x, y) + α d(Sx, y) + β d(Sy, x) ≥ γ d(Sx, Sy),

where α, β, γ ≥ 0. If (i) SX is complete; (ii) 1 + α + β < γ, then S has
a unique fixed point.
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Corollary 3.10. Let (X, d) be a complex valued metric space, T :
X → X a mapping. Suppose that for each x, y ∈ X with x 6= y,

d(Tx, Ty) + α d(T 2x, Ty) + β d(T 2y, Tx) ≥ γ d(T 2x, T 2y),

where α, β, γ ≥ 0. If (i) TX is complete; (ii) 1 + α + β < γ, then T has
a unique fixed point.

Theorem 3.11. Let (X, d) be a complete complex valued metric
space, S, T : X → X two onto mappings. Suppose that for each x, y ∈ X
with x 6= y,

(3.9) d(Sx, Ty) + α d(x, Ty) + β d(y, Sx) ≥ γ d(x, y),

where α, β, γ ≥ 0, and γ > 2max{α, β}+1, then S and T have a unique
common fixed point.

Proof. Take any x0 ∈ X, we construct a sequence {xn} as follows

x2n = Sx2n+1, x2n+1 = Tx2n+2, n = 0, 1, 2, · · · .

If there exists n such that x2n = x2n+1, then taking x = x2n+1, y =
x2n+2 and using (3.9), we obtain

d(x2n, x2n+1) + βd(x2n+2, x2n) ≥ γd(x2n+1, x2n+2),

which implies that

d(x2n, x2n+1) + β[d(x2n+2, x2n+1) + d(x2n+1, x2n)] ≥ γd(x2n+1, x2n+2),

i.e.,
βd(x2n+2, x2n+1) ≥ γd(x2n+1, x2n+2).

Hence d(x2n+1, x2n+2) = 0 since β < γ, that is, x2n+1 = x2n+2. There-
fore Sx2n+1 = x2n = x2n+1 = Tx2n+2 = Tx2n+1 implies that x2n+1 is a
common fixed point of S and T .

If there exists n such that x2n+1 = x2n+2, then taking x = x2n+3, y =
x2n+2 and using (3.9), we obtain

d(x2n+2, x2n+1) + αd(x2n+3, x2n+1) ≥ γd(x2n+3, x2n+2),

which implies that

d(x2n+2, x2n+1)+α[d(x2n+3, x2n+2)+d(x2n+2, x2n+1)] ≥ γd(x2n+1, x2n+2),

i.e.,
αd(x2n+3, x2n+2) ≥ γd(x2n+3, x2n+2).

Hence d(x2n+3, x2n+2) = 0, that is, x2n+3 = x2n+2. Therefore Tx2n+2 =
x2n+1 = x2n+2 = Sx2n+3 = Sx2n+2 implies that x2n+2 is a common
fixed point of S and T .

Hence from now on, we assume that xn 6= xn+1, ∀n = 0, 1, 2, · · · .
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Taking x = x2n+1, y = x2n+2 and using (3.9), we obtain

d(x2n, x2n+1) + βd(x2n+2, x2n) ≥ γd(x2n+1, x2n+2),

which implies that

d(x2n, x2n+1) + β[d(x2n+2, x2n+1) + d(x2n+1, x2n)] ≥ γd(x2n+1, x2n+2),

hence

(3.10) d(x2n+1, x2n+2) ≤ 1 + β

γ − β
d(x2n+1, x2n), ∀n = 0, 1, · · · .

Similarly, taking x = x2n+3, y = x2n+2 and using (3.9), we obtain

d(x2n+2, x2n+1) + αd(x2n+3, x2n+1) ≥ γd(x2n+3, x2n+2),

which implies that

d(x2n+2, x2n+1)+α[d(x2n+3, x2n+2)+d(x2n+2, x2n+1)] ≥ γd(x2n+3, x2n+2),

hence

(3.11) d(x2n+3, x2n+2) ≤ 1 + α

γ − α
d(x2n+2, x2n+1), ∀n = 0, 1, · · · .

Let h = max{ 1+α
γ−α , 1+β

γ−β}, then 0 < h < 1, and from (3.10) and (3.11),

(3.12) d(xn+2, xn+1) ≤ hd(xn+1, xn), ∀n = 0, 1, · · · .

Hence {xn} is a Cauchy sequence by Lemma 2.6. Since X is complete,
there exists u ∈ X such that xn → u. Since T is onto, there exists z ∈ X
such that u = Tz, x2n+1 → Tz and x2n → Tz. Taking x = x2n+1, y = z
and using (3.9), we obtain

d(x2n, T z) + α d(x2n+1, T z) + β d(z, x2n) ≥ γ d(x2n+1, z),

hence

|d(x2n, T z)|+ α |d(x2n+1, T z)|+ β |d(z, x2n)| ≥ γ |d(x2n+1, z)|.
Let n →∞, then by Lemma 2.4, the above inequality becomes

β |d(z, Tz)| ≥ γ |d(Tz, z)|.
Hence |d(z, Tz)| = 0 since 0 ≤ β < γ, that is, Tz = z.

Similarly, Since S is onto, there exists w ∈ X such that u = Sw,
x2n+1 → Sw and x2n → Sw. Taking x = w, y = x2n+2 and using (3.9),
we obtain

d(Sw, x2n+1) + α d(w, x2n+1) + β d(x2n+2, Sw) ≥ γ d(w, x2n+2),

hence

|d(Sw, x2n+1)|+ α |d(w, x2n+1)|+ β |d(x2n+2, Sw)| ≥ γ |d(w, x2n+2)|.
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Let n →∞, then by Lemma 2.4, the above inequality becomes

α |d(w, Sw)| ≥ γ |d(w, Sw)|.
Hence |d(w, Sw)| = 0 since 0 ≤ α < γ, that is, Sw = w.

Taking x = w, y = z and using (3.9), we obtain

d(Sw, Tz) + α d(w, Tz) + β d(z, Sw) ≥ γ d(w, z),

that is,

(3.13) (1 + α + β) d(z, w) ≥ γ d(w, z).

Hence d(w, z) = 0 since γ > 2max{α, β}+1 ≥ 1+α+β, that is, w = z.
Therefore z = Tz = Sz, i.e., z is a common fixed point of S and T .

Suppose that v is also a common fixed point of S and T , that is,
v = Sv = Tv holds. Taking x = z, y = v and using (3.9), we obtain

(1 + α + β)d(z, v) ≥ γd(z, v).

Hence z = v, So z is the unique common fixed point of S and T .

Using Theorem 3.11, we give the following particular forms:

Corollary 3.12. Let (X, d) be a complete complex valued metric
space, S, T : X → X two onto mappings. If for each x, y ∈ x with x 6= y,

d(Sx, Ty) ≥ hd(x, y),

where h > 1. Then S and T have a unique common fixed point.

Corollary 3.13. Let (X, d) be a complete complex valued metric
space, T : X → X an onto mapping. If for each x, y ∈ X with x 6= y,

d(Tx, Ty) + α d(x, Ty) + β d(y, Tx) ≥ γ d(x, y),

where α, β, γ ≥ 0 and γ > 2max{α, β}+ 1. Then T has a unique fixed
point.

Finally, we give a fixed point theorem for an expansive map which
is weaker than I-expansive condition but stronger than III-expansive
condition.

Theorem 3.14. Let (X, d) be a complete complex valued metric
space, T : X → X an onto mapping. Suppose that d(y, Ty) and d(x, y)
are comparable for x, y ∈ X with x 6= y, and the following holds

(3.14) d(Tx, Ty) ≥ h min{d(y, Ty), d(x, y)},
where h > 1. If T is continuous, then T has a fixed point.



Common fixed points for two mappings with expansive properties 27

Proof. Take any element x0 ∈ X, and construct a sequence {xn} in
X satisfying

xn = Txn+1, n = 0, 1, 2, · · · .

If there exists n such that xn = xn+1, then xn is the fixed point of T .
So we assume that

xn 6= xn+1,∀n = 0, 1, 2, · · ·
For each n = 0, 1, 2, · · · , taking x = xn+1, y = xn+2 and using (3.14),

we obtain
d(xn, xn+1) ≥ h d(xn+1, xn+2),

hence
d(xn+1, xn+2) ≤ M d(xn, xn+1),

where M = 1
h < 1, Hence {xn} is a Cauchy sequence by Lemma 2.6.

Since X is complete, there exists x∗ ∈ X such that xn = Txn+1 → x∗.
Since T is continuous, so xn = Txn+1 → Tx∗ by Lemma 2.5. Hence
Tx∗ = x∗ by Lemma 2.3, i.e., x∗ is a fixed point of T .
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point under contractive condition of ciric’s type on cone metric type spaces,
Fixed Point Theory and Applications, 2012, doi:10. 1186/1687-1812-2012-35.

[17] S. Z. Wang, B. Y. Li, and Z. M. Gao, Expansive mappings and fixed point
theorems, Advances in Mathematics(Chinese Series) 11 (1982), no. 2, 149-153.

*
Department of Mathematics
Yanbian University
Yanji 133002, P. R. China
E-mail : sxpyj@ybu.edu.cn


