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HOPF HYPERSURFACES IN COMPLEX TWO-PLANE

GRASSMANNIANS WITH LIE PARALLEL

NORMAL JACOBI OPERATOR

Imsoon Jeong, Hyunjin Lee, and Young Jin Suh

Abstract. In this paper we give some non-existence theorems for Hopf
hypersurfaces in the complex two-plane Grassmannian G2(Cm+2) with
Lie parallel normal Jacobi operator R̄N and totally geodesic D and D⊥

components of the Reeb flow.

0. Introduction

The Jacobi fields along geodesics of a given Riemannian manifold (M̄, ḡ)
play an important role in the study of differential geometry. It satisfies a very
well-known differential equation. This classical differential equation naturally
inspires the so-called Jacobi operators. That is, if R̄ is the curvature operator
of M̄ and X is any vector field tangent to M̄ , the Jacobi operator with respect
to X at x ∈ M̄ , R̄X ∈ End(TxM̄), is defined as R̄X(Y )(x) = (R̄(Y,X)X)(x) for
all Y ∈ TxM̄ , being a self-adjoint endomorphism of the tangent bundle TM̄ of
M̄ . Clearly, each vector field X tangent to M̄ provides a Jacobi operator with
respect to X (See [7] and [9]).

If the structure vector field ξ = −JN of a real hypersurface M in complex
projective space Pn(C) is invariant under the shape operator, ξ is said to be
Hopf, where J denotes a Kähler structure of Pn(C), and N is a unit normal
vector field of M in Pn(C).

In the quaternionic projective space HPm Pérez and Suh [10] classified the
real hypersurfaces in HPm with D⊥-parallel curvature tensor ∇ξνR = 0 for
ν = 1, 2, 3, where R denotes the curvature tensor of M in HPm and D⊥ is a
distribution defined by D⊥ = Span {ξ1, ξ2, ξ3}. In this case they are congruent
to a tube of radius π

4 over a totally geodesic quaternionic submanifold HP k in
HPm, 2 ≤ k ≤ m− 2.
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The vector fields {ξ1, ξ2, ξ3} mentioned above, which are said to be almost
contact structure, are defined by ξν = −JνN , ν = 1, 2, 3, where {J1, J2, J3}
denote a local basis of a quaternionic Kähler structure of HPm and N is a unit
normal vector field of M in HPm.

In quaternionic space forms, Berndt [1] introduced the notion of normal
Jacobi operator

R̄NX = R̄(X,N)N ∈End (TxM) , x ∈ M

for real hypersurfaces M in a quaternionic projective space HPm or in a quater-
nionic hyperbolic space HHm, where R̄ denotes the curvature tensor of HPm

and HHm respectively. Berndt [1] also showed that “the curvature adapted-
ness”, when the normal Jacobi operator R̄N commutes with the shape operator
A, is equivalent to the fact that the distributions D and D⊥ = Span{ξ1, ξ2, ξ3}
are invariant under the shape operator A of M , where TxM = D⊕D⊥, x∈M .

Now let us consider a complex two-plane Grassmannian G2(Cm+2) which
consists of all complex 2-dimensional linear subspaces in Cm+2. The situation
for Hopf hypersurfaces in G2(Cm+1) with parallel normal Jacobi operator R̄N

is not so simple and will be quite different from the cases in HPm.
In this paper the present authors consider a real hypersurface M in the

complex two-plane Grassmannian G2(Cm+2) with Lie parallel normal Jacobi
operator, that is, LXR̄N = 0 for any X ∈ TxM , x ∈ M , where R̄ and N
respectively denote the curvature tensor of the ambient space G2(Cm+2) and
a unit normal vector field of M in G2(Cm+2). The curvature tensor R̄(X,Y )Z
for any vector fields X,Y and Z on G2(Cm+2) is explicitly defined in Section
1. Then the normal Jacobi operator R̄N for the unit normal vector field N can
be defined from the curvature tensor R̄(X,N)N by putting Y = Z = N .

The ambient space G2(Cm+2) is known to be the unique compact irreducible
Riemannian symmetric space equipped with both a Kähler structure J and
a quaternionic Kähler structure J not containing J (See Berndt [2]). From
these two structures J and J, we have geometric conditions naturally induced
on a real hypersurface M in G2(Cm+2) such that [ξ] = Span {ξ} or D⊥ =
Span {ξ1, ξ2, ξ3} is invariant under the shape operator. By these two conditions,
Berndt and Suh [3] proved the following:

Theorem A. Let M be a connected real hypersurface in G2(Cm+2), m ≥ 3.
Then both [ξ] and D⊥ are invariant under the shape operator of M if and only
if

(A) M is an open part of a tube around a totally geodesic G2(Cm+1) in
G2(Cm+2), or

(B) m is even, say m = 2n, and M is an open part of a tube around a totally
geodesic HPn in G2(Cm+2).

The structure vector field ξ of a real hypersurface M in G2(Cm+2) is said to
be a Reeb vector field. Moreover, the Reeb vector field ξ is said to be Hopf if it
is invariant under the shape operator A. The 1-dimensional foliation of M by
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the integral manifolds of the Reeb vector field ξ is said to be a Hopf foliation
of M . We say that M is a Hopf hypersurface in G2(Cm+2) if and only if the
Hopf foliation of M is totally geodesic. By the formulas in section 2 it can be
easily checked that M is Hopf if and only if the Reeb vector field ξ is Hopf.
The flow generated by the integral curves of the Reeb vector field is said to be
a geodesic Reeb flow if M becomes a Hopf hypersurface in G2(Cm+2).

We say that the Reeb vector field is Killing if the Lie derivative of the Rie-
mannian metric g for M in G2(Cm+2) along the Reeb direction vanishes, that
is, Lξg = 0. This means that the Reeb flow is isometric. Using such a notion,
Berndt and Suh [4] proved that a connected orientable real hypersurface in
G2(Cm+2) with isometric Reeb flow becomes an open part of a tube over a
totally geodesic G2(Cm+1) in G2(Cm+2). In [15], Suh also gave a characteriza-
tion for this kind of hypersurfaces in terms of another geometric Lie invariant.
Namely, he characterized them as the hypersurfaces in G2(Cm+2) such that the
shape operator A is invariant under the Reeb flow.

Now by putting a unit normal vector field N into the curvature tensor R̄ of
the ambient space G2(Cm+2), the normal Jacobi operator R̄N can be defined
in such a way that

R̄NX = R̄(X,N)N

= X + 3η(X)ξ + 3
∑3

ν=1
ην(X)ξν

−
∑3

ν=1

{
ην(ξ)(ϕνϕX − η(X)ξν)− ην(ϕX)ϕνξ

}
for any tangent vector field X on M in G2(Cm+2).

In the paper [8] due to Jeong, Pérez and Suh, we classified real hypersurfaces
in G2(Cm+2) with commuting normal Jacobi operator, that is, R̄N ◦ϕ = ϕ◦R̄N

or R̄N ◦A = A ◦ R̄N . The fact that the normal Jacobi operator R̄N commutes
with the shape operator A (or the structure tensor ϕ) of M in G2(Cm+2) means
that the eigenspaces of the normal Jacobi operator are invariant under the
shape operator A (or the structure tensor ϕ). Also, in [5], Jeong, Kim and Suh
introduced the notion of parallel normal Jacobi operator for real hypersurfaces
M in G2(Cm+2). Such an operator is said to be parallel if ∇XR̄N = 0 for any
tangent vector field X on M . This means that the eigenspaces of the normal
Jacobi operator R̄N are parallel along any curve γ in M . Here the eigenspaces
of the normal Jacobi operator R̄N are said to be parallel along γ if they are
invariant with respect to any parallel displacement along γ. Using this notion,
they gave a non-existence theorem for Hopf hypersurfaces in G2(Cm+2) with
parallel normal Jacobi operator.

Related to such a parallel normal Jacobi operator, in this paper the authors
give a theorem for real hypersurfaces M in G2(Cm+2) with Lie parallel normal
Jacobi operator, that is, LXR̄N = 0 for any X ∈ TxM , x ∈ M . This means
that all the eigenspaces of the normal Jacobi operator R̄N are invariant under



430 IMSOON JEONG, HYUNJIN LEE, AND YOUNG JIN SUH

any parallel displacement ϕ∗
t generated from the flow ϕt such that ϕt(x) = γ(t)

and γ(0) = x for the integral curve γ of X in TxM , x ∈ M .
Then the authors prove the following for real hypersurfaces in G2(Cm+2)

with Lie parallel normal Jacobi operators:

Theorem 1. Let M be a Hopf real hypersurface in G2(Cm+2) with Lie parallel
normal Jacobi operator. If the integral curves of D and D⊥ components of the
Reeb vector field ξ are totally geodesic, then ξ belongs to either the distribution
D or the distribution D⊥.

On the other hand, in the paper [6] of Jeong and Suh, we gave non-existence
theorems for real hypersurfaces M in G2(Cm+2) with Lie ξ-parallel normal
Jacobi operator, that is, LξR̄N = 0 as follows:

Theorem B. There does not exist any real hypersurface in G2(Cm+2) with
LξR̄N = 0 if the Reeb vector field ξ ∈ D⊥.

Theorem C. There does not exist any real hypersurface in G2(Cm+2) with
LξR̄N = 0 if the Reeb vector field ξ ∈ D.

Then as an application of Theorem 1 to Theorems B and C the authors can
assert the following:

Theorem 2. There does not exist any Hopf real hypersurface in G2(Cm+2)
with Lie parallel normal Jacobi operator if the integral curves of D and D⊥

components of the Reeb vector field are totally geodesic.

1. Riemannian geometry of G2(Cm+2)

In this section we summarize basic material about G2(Cm+2), for details
refer to [2], [3], and [4]. By G2(Cm+2) we denote the set of all complex
two-dimensional linear subspaces in Cm+2. The special unitary group G =
SU(m + 2) acts transitively on G2(Cm+2) with stabilizer isomorphic to K =
S(U(2)×U(m)) ⊂ G. The space G2(Cm+2) can be identified with the homoge-
neous space G/K, which we equip with the unique analytic structure for which
the natural action of G on G2(Cm+2) becomes analytic. Denote by g and k
the Lie algebra of G and K, respectively, and by m the orthogonal complement
of k in g with respect to the Cartan-Killing form B of g. Then g = k ⊕ m is
an Ad(K)-invariant reductive decomposition of g. We put o = eK and iden-
tify ToG2(Cm+2) with m in the usual manner. Since B is negative definite
on g, negative B restricted to m × m yields a positive definite inner product
on m. By Ad(K)-invariance of B this inner product can be extended to a
G-invariant Riemannian metric g on G2(Cm+2). In this way G2(Cm+2) be-
comes a Riemannian homogeneous space, even a Riemannian symmetric space.
For computational reasons we normalize g such that the maximum sectional
curvature of (G2(Cm+2), g) is eight.

When m = 1, G2(C3) is isometric to the two-dimensional complex projective
space CP 2 with constant holomorphic sectional curvature eight. When m = 2,
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we note that the isomorphism Spin(6) ≃ SU(4) yields an isometry between
G2(C4) and the real Grassmann manifold G+

2 (R6) of oriented two-dimensional
linear subspaces in R6. From now on, in this paper we will assume m ≥ 3.

The Lie algebra k has the direct sum decomposition, that is, a Cartan de-
composition

k = su(m)⊕ su(2)⊕R ,

where R is the center of k. Viewing k as the holonomy algebra of G2(Cm+2),
the center R induces a Kähler structure J and the su(2)-part a quaternionic
Kähler structure J on G2(Cm+2). If Jν , ν = 1, 2, 3, is any almost Hermitian
structure in J, then JJν = JνJ , and JJν is a symmetric endomorphism with
(JJν)

2 = I and tr(JJν) = 0.
A canonical local basis J1, J2, J3 of J consists of three local almost Hermit-

ian structures Jν in J such that JνJν+1 = Jν+2 = −Jν+1Jν , where the index ν
is taken modulo three. Since J is parallel with respect to the Riemannian con-
nection ∇̄ of (G2(Cm+2), g), there exist for any canonical local basis J1, J2, J3
of J three local one-forms q1, q2, q3 such that

(1.1) ∇̄XJν = qν+2(X)Jν+1 − qν+1(X)Jν+2

for all vector fields X on G2(Cm+2).
The Riemannian curvature tensor R̄ of G2(Cm+2) is locally given by

R̄(X,Y )Z = g(Y,Z)X − g(X,Z)Y + g(JY, Z)JX

− g(JX,Z)JY − 2g(JX, Y )JZ

+

3∑
ν=1

{g(JνY, Z)JνX − g(JνX,Z)JνY − 2g(JνX,Y )JνZ}(1.2)

+

3∑
ν=1

{g(JνJY, Z)JνJX − g(JνJX,Z)JνJY },

where J1, J2, J3 is any canonical local basis of J.

2. Some fundamental formulas for real hypersurfaces in G2(Cm+2)

Now in this section we want to derive some fundamental formulas which
will be used in the proof of our theorems and the equation of Codazzi for real
hypersurfaces in G2(Cm+2) (See [3], [4], [12], [13], and [14]).

LetM be a real hypersurface of G2(Cm+2), that is, a submanifold of G2(Cm+2)

with real codimension one. The induced Riemannian metric on M will also be
denoted by g, and ∇ denotes the Riemannian connection of (M, g). Let N be
a local unit normal field of M and A the shape operator of M with respect
to N . The Kähler structure J of G2(Cm+2) induces on M an almost contact
metric structure (ϕ, ξ, η, g). More explicitly, we can define a tensor field ϕ of
type (1, 1), a vector field ξ and its dual 1-form η on M by g(ϕX, Y ) = g(JX, Y )
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and η(X) = g(X, ξ) for any tangent vector fields X and Y on M . Then they
satisfy the following

ϕ2X = −X + η(X)ξ , ϕξ = 0 , η(ϕX) = 0 and η(ξ) = 1

for any tangent vector field X.
Furthermore, let J1, J2, J3 be a canonical local basis of J. Then each Jν

induces an almost contact metric structure (ϕν , ξν , ην , g) on M in such a way
that a tensor filed ϕν of type (1, 1), a vector field ξν and its dual 1-form ην on
M defined by g(ϕνX,Y ) = g(JνX,Y ) and ην(X) = g(ξν , X) for any tangent
vector fields X and Y on M . Then they also satisfy the following

ϕ2
νX = −X + ην(X)ξ , ϕνξν = 0 , ην(ϕνX) = 0 and ην(ξν) = 1

for any vector field X tangent to M and ν = 1, 2, 3.
Using the above expression (1.2) for the curvature tensor R̄ of the ambient

space G2(Cm+2), the equation of Codazzi becomes

(∇XA)Y − (∇Y A)X = η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ

+
3∑

ν=1

{
ην(X)ϕνY − ην(Y )ϕνX − 2g(ϕνX,Y )ξν

}
+

3∑
ν=1

{
ην(ϕX)ϕνϕY − ην(ϕY )ϕνϕX

}
+

3∑
ν=1

{
η(X)ην(ϕY )− η(Y )ην(ϕX)

}
ξν .

The following identities can be proved in a straightforward method and will be
used frequently in subsequent calculations:

(2.1)

ϕν+1ξν = −ξν+2, ϕνξν+1 = ξν+2,

ϕξν = ϕνξ, ην(ϕX) = η(ϕνX),

ϕνϕν+1X = ϕν+2X + ην+1(X)ξν ,

ϕν+1ϕνX = −ϕν+2X + ην(X)ξν+1.

Now let us note that

(2.2) JX = ϕX + η(X)N , JνX = ϕνX + ην(X)N

for any vector field X tangent to M in G2(Cm+2), where N denotes a unit
normal vector field of M in G2(Cm+2). Then from this and the formulas (1.1)
and (2.1) we have that

(2.3) (∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ, ∇Xξ = ϕAX,

(2.4) ∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + ϕνAX,
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(2.5)
(∇Xϕν)Y = − qν+1(X)ϕν+2Y + qν+2(X)ϕν+1Y + ην(Y )AX

− g(AX,Y )ξν .

Summing up these formulas, we find the following

(2.6)

∇X(ϕνξ) = ∇X(ϕξν)

= (∇Xϕ)ξν + ϕ(∇Xξν)

= qν+2(X)ϕν+1ξ − qν+1(X)ϕν+2ξ + ϕνϕAX

− g(AX, ξ)ξν + η(ξν)AX.

Moreover, from JJν = JνJ , ν = 1, 2, 3, it follows that

(2.7) ϕϕνX = ϕνϕX + ην(X)ξ − η(X)ξν .

3. Lie parallel normal Jacobi operator

Let M be a real hypersurface in G2(Cm+2) with Lie parallel normal Jacobi
operator, that is, LXR̄N = 0 for any vector field X tangent to M . Then first
of all, we write the normal Jacobi operator R̄N , which is given by
(3.1)

R̄N (X) = R̄(X,N)N = X + 3η(X)ξ + 3
∑3

ν=1
ην(X)ξν

−
∑3

ν=1

{
ην(ξ)Jν(ϕX + η(X)N)− ην(ϕX)(ϕνξ + ην(ξ)N)

}
= X + 3η(X)ξ + 3

∑3

ν=1
ην(X)ξν

−
∑3

ν=1

{
ην(ξ)(ϕνϕX − η(X)ξν)− ην(ϕX)ϕνξ

}
where we have used the following

g(JνJN,N) = −g(JN, JνN) = −g(ξ, ξν) = −ην(ξ),

g(JνJX,N) = g(X, JJνN) = −g(X, Jξν)

= −g(X,ϕξν + η(ξν)N) = −g(X,ϕξν),

and
JνJN = −Jνξ = −ϕνξ − ην(ξ)N.

Of course, by (2.7) we know that the normal Jacobi operator R̄N is a symmetric
endomorphism of TxM , x∈M .

Now let us consider the Lie derivative of the normal Jacobi operator along
any direction. Then for any vector fields X and Y tangent to M it is given by

(3.2)

(LXR̄N )Y = LX(R̄NY )− R̄N (LXY )

= [X, R̄NY ]− R̄N [X,Y ]

= (∇XR̄N )Y −∇R̄NY X + R̄N (∇Y X)

where the terms in the right side can be given respectively as follows:

(∇XR̄N )Y = 3(∇Xη)(Y )ξ + 3η(Y )∇Xξ + 3
∑3

ν=1
(∇Xην)(Y )ξν
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+ 3
∑3

ν=1
ην(Y )∇Xξν −

∑3

ν=1

[
X(ην(ξ))(ϕνϕY − η(Y )ξν)

+ ην(ξ)
{
(∇Xϕνϕ)Y − (∇Xη)(Y )ξν − η(Y )∇Xξν

}
− (∇Xην)(ϕY )ϕνξ − ην((∇Xϕ)Y )ϕνξ − ην(ϕY )∇X(ϕνξ)

]
,

∇R̄NY X = ∇Y X + 3η(Y )∇ξX + 3
∑3

ν=1
ην(Y )∇ξνX −

∑3

ν=1
ην(ξ)∇ϕνϕY X

+
∑3

ν=1
ην(ξ)η(Y )∇ξνX +

∑3

ν=1
ην(ϕY )∇ϕνξX

and

R̄N (∇Y X) = ∇Y X + 3η(∇Y X)ξ + 3
∑3

ν=1
ην(∇Y X)ξν

−
∑3

ν=1
{ην(ξ)(ϕνϕ∇Y X − η(∇Y X)ξν)− ην(ϕ∇Y X)ϕνξ}.

Then by the formulas given in section 2, (3.2) gives the following for a real
hypersurface M in G2(Cm+2) with Lie parallel normal Jacobi operator R̄N :

(LXR̄N )Y = 3g(ϕAX, Y )ξ + 3η(Y )ϕAX + 3
∑3

ν=1
g(ϕνAX,Y )ξν

+ 3
∑3

ν=1
ην(Y )ϕνAX

−
∑3

ν=1

[
X(ην(ξ))(ϕνϕY − η(Y )ξν)

+ ην(ξ)
{
− qν+1(X)ϕν+2ϕY + qν+2(X)ϕν+1ϕY

+ ην(ϕY )AX − g(AX,ϕY )ξν

+ η(Y )ϕνAX − g(AX,Y )ϕνξ − g(ϕAX, Y )ξν

− η(Y )(qν+2(X)ξν+1 − qν+1(X)ξν+2 + ϕνAX)
}

− g(ϕνAX,ϕY )ϕνξ − η(Y )ην(AX)ϕνξ + g(AX,Y )ην(ξ)ϕνξ(3.3)

− ην(ϕY )
{
ην(ξ)AX − g(AX, ξ)ξν + ϕνϕAX

}]
− 3η(Y )∇ξX − 3

∑3

ν=1
ην(Y )∇ξνX

+
∑3

ν=1
{ην(ξ)(∇ϕνϕY X − η(Y )∇ξνX)− ην(ϕY )∇ϕνξX}

+ 3η(∇Y X)ξ + 3
∑3

ν=1
ην(∇Y X)ξν

−
∑3

ν=1

{
ην(ξ)(ϕνϕ∇Y X − η(∇Y X)ξν)− ην(ϕ∇Y X)ϕνξ

}
= 0,
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where in the first equality we have used the following formulas

3
∑3

ν=1
g(qν+2(X)ξν+1 − qν+1(X)ξν+2, Y )ξν

+ 3
∑3

ν=1
ην(Y )

{
qν+2(X)ξν+1 − qν+1(X)ξν+2

}
= 0

and ∑3

ν=1

{
ην+1(ϕY )qν+2(X)ϕνξ − ην+2(ϕY )qν+1(X)ϕνξ

− ην(ϕY )qν+1(X)ϕν+2ξ + ην(ϕY )qν+2(X)ϕν+1ξ
}
= 0.

In particular by putting X = ξ in (3.3) we have the following

(LξR̄N )Y = 3g(ϕAξ, Y )ξ + 3
∑3

ν=1
g(ϕνAξ, Y )ξν

+ 3
∑3

ν=1
ην(Y )ϕνAξ

−
∑3

ν=1

[
ξ(ην(ξ))(ϕνϕY − η(Y )ξν)

+ ην(ξ)
{
− qν+1(ξ)ϕν+2ϕY + qν+2(ξ)ϕν+1ϕY

+ ην(ϕY )Aξ − g(Aξ, ϕY )ξν

+ η(Y )ϕνAξ − g(Aξ, Y )ϕνξ − g(ϕAξ, Y )ξν

− η(Y )(qν+2(ξ)ξν+1 − qν+1(ξ)ξν+2 + ϕνAξ)
}

− g(ϕνAξ, ϕY )ϕνξ − η(Y )ην(Aξ)ϕνξ + g(Aξ, Y )ην(ξ)ϕνξ(3.4)

− ην(ϕY )
{
ην(ξ)Aξ − g(Aξ, ξ)ξν + ϕνϕAξ

}]
− 3

∑3

ν=1
ην(Y )ϕAξν + 3

∑3

ν=1
ην(ϕAY )ξν

+
∑3

ν=1

[
ην(ξ)

{
ϕAϕνϕY − η(Y )ϕAξν

}
− ην(ϕY )ϕAϕνξ

]
+
∑3

ν=1

[
ην(ξ)

{
ϕνAY − η(AY )ϕνξ

}
− ην(AY )ϕνξ

+ η(AY )ην(ξ)ϕνξ

]
= 0 ,

where in the first equality we have used the second formula of (2.3). From this,
by putting Y = ξ in (3.4) we have the following

(LξR̄N )ξ = 6
∑3

ν=1
g(ϕνAξ, ξ)ξν + 4

∑3

ν=1
ην(ξ)ϕνAξ
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+
∑3

ν=1

[
ξ(ην(ξ))ξν + ην(ξ)

{
qν+2(ξ)ξν+1 − qν+1(ξ)ξν+2

}]
(3.5)

− 4
∑3

ν=1
ην(ξ)ϕAξν

= 0.

4. Lie parallel normal Jacobi operator

In this section we want to prove the following:

Proposition 4.1. Let M be a Hopf real hypersurface in G2(Cm+2) with Lie
parallel normal Jacobi operator. If the integral curves of D and D⊥ compo-
nents of the Reeb vector field ξ are totally geodesic, then ξ belongs to either the
distribution D or the distribution D⊥.

Proof. When the function α = g(Aξ, ξ) identically vanishes, the proposition
was proved directly by Pérez and Suh [11]. Thus we consider only the case
that the function α is non-vanishing in this proof.
By putting Aξ = αξ into (3.5) we have

(4.1)
∑3

ν=1
ην(ξ)(αϕνξ − ϕAξν) = 0,

where we have used the following formula∑3

ν=1

[
ξ(ην(ξ))ξν + ην(ξ){qν+2(ξ)ξν+1 − qν+1(ξ)ξν+2}

]
= 0.

Now let us put ξ = η(X0)X0 + η(ξ1)ξ1 for some unit X0 ∈ D and ξ1 ∈ D⊥.
Then naturally we know that η(ξ2) = η(ξ3) = 0. Hereafter, unless otherwise
stated, let us assume η(X0)η(ξ1) ̸= 0.
Then (4.1) reduces to

αϕ1ξ − ϕAξ1 = 0.

From this, by taking the structure tensor ϕ and also using that ξ is principal,
we have

(4.2) Aξ1 = αξ1 and AX0 = αX0.

Then putting X = X0 and Y = ξ into (3.3) and using (4.2) gives

0 = (LX0R̄N )ξ

= 3αϕX0 + 3α
∑3

ν=1
g(ϕνX0, ξ)ξν + 3αη1(ξ)ϕ1X0

+ η1(ξ){q3(X0)ξ2 − q2(X0)ξ3} − 3∇ξX0 − 4η1(ξ)∇ξ1X0

+ 3η(∇ξX0)ξ + 3
∑3

ν=1
ην(∇ξX0)ξν − η1(ξ)ϕ1ϕ∇ξX0

+ η1(ξ)η(∇ξX0)ξ1 +
∑3

ν=1
ην(ϕ∇ξX0)ϕνξ,

where we have used

X0(η1(ξ))ξ1 = g(∇X0ξ1, ξ)ξ1 + g(ξ1,∇X0ξ)ξ1
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= g(ϕ1AX0, ξ)ξ1 + g(ξ1, ϕAX0)ξ1

= −αg(X0, ϕ1ξ)ξ1 − αg(ϕ1ξ,X0)ξ1

= −2αg(X0, ϕ1(η(X0)X0 + η(ξ1)ξ1))

= −2αη(X0)g(X0, ϕ1X0)

= 0 .

From this, together with (2.3) and (2.4), and using ϕX0 ∈ D, ∇ξX0 ∈ D and
η(∇ξX0) = 0, we have

(4.3)

0 = (LX0R̄N )ξ

= 3α(ϕX0 + η1(ξ)ϕ1X0) + η1(ξ){q3(X0)ξ2 − q2(X0)ξ3}
− 3∇ξX0 − 4η1(ξ)∇ξ1X0 − η1(ξ)ϕ1ϕ∇ξX0

+
∑3

ν=1
ην(ϕ∇ξX0)ϕνξ,

because we know the following

g(ϕX0, ξν) = −g(X0, ϕξν) = −g(X0, ϕνξ) = 0 ,

η(∇ξX0) = g(∇ξX0, ξ) = g(∇ξX0, η(X0)X0 + η(ξ1)ξ1) = 0

and

g(∇ξX0, ξν) = −g(X0,∇ξξν)

= −αg(X0, ϕνξ)

= −αg(X0, ϕξν)

= αg(ϕX0, ξν)

= 0

for any ν = 1, 2, 3.
On the other hand, we know that

(4.4) ∇ξ1X0 ∈ D ,

because

g(∇ξ1X0, ξν) = −g(X0,∇ξ1ξν)

= −g(X0, qν+2(ξ1)ξν+1 − qν+1(ξ1)ξν+2 + ϕνAξ1)

= −αg(X0, ϕνξ1)

= 0 .

Moreover, the following formulas hold

(4.5) g(ϕ∇ξX0, ξ2) = 0 and g(ϕ∇ξX0, ξ3) = 0 .

In fact, differentiating g(ϕX0, ξ2) = 0 gives

0 = g((∇ξϕ)X0, ξ2) + g(ϕ∇ξX0, ξ2) + g(ϕX0,∇ξξ2)

= g(ϕ∇ξX0, ξ2) + αg(ϕX0, ϕξ2)
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= g(ϕ∇ξX0, ξ2)

and similarly the latter term comes from g(ϕX0, ξ3) = 0.
By taking the inner product (4.3) with ξ3, and using the facts that ϕX0,

ϕ1X0, ∇ξX0 and ∇ξ1X0 belong to the distribution D, we have

0 =− η1(ξ)q2(X0)− η1(ξ)g(ϕ1ϕ∇ξX0, ξ3) + η1(ϕ∇ξX0)g(ϕ1ξ, ξ3)

=− η1(ξ)q2(X0).

Similarly, by taking the inner product with ξ2 to (4.3), we have the following
relations

(4.6) q2(X0) = 0 and q3(X0) = 0

under the assumption of η1(ξ)̸=0. Then (4.4), (4.5) and (4.6) give

(4.7)

0 = (LX0R̄N )ξ

= 3α(ϕX0 + η1(ξ)ϕ1X0)− 3∇ξX0 − 4η1(ξ)∇ξ1X0

− η1(ξ)ϕ1ϕ∇ξX0 + η1(ϕ∇ξX0)ϕ1ξ.

On the other hand, by the assumption of M being Hopf and using (4.2), we
have

∇ξξ = ϕAξ

= ϕA(η(X0)X0 + η(ξ1)ξ1)

= α(η(X0)ϕX0 + η(ξ1)η(X0)ϕ1X0)

= αη(X0)(ϕX0 + η(ξ1)ϕ1X0)

= 0.

Consequently, we see

(4.8) ϕX0 + η(ξ1)ϕ1X0 = 0.

from the assumption of α ̸= 0 and η(X0) ̸= 0.
Substituting (4.8) into (4.7), we have

0 = (LX0R̄N )ξ

= −3∇ξX0 − 4η1(ξ)∇ξ1X0 − η1(ξ)ϕ1ϕ∇ξX0 + η1(ϕ∇ξX0)ϕ1ξ.

Now, by applying the operator ϕ1 to (4.8) we have

(4.9) ϕ1ϕX0 = η(ξ1)X0.

Then by differentiating (4.9) along the direction of the Reeb vector field ξ and
using (2.1), (2.3), (2.4), (2.5) and (4.8), we have

(4.10) q2(ξ)η(ξ1)ϕ2X0 + q3(ξ)η(ξ1)ϕ3X0 + ϕ1ϕ∇ξX0 = η(ξ1)∇ξX0.

By taking the inner product (4.10) with ξ2 and ξ3 respectively and using the
fact that ∇ξX0, ϕνX0 ∈ D, ν = 1, 2, 3, we have the following respectively

(4.11) g(∇ξX0, ϕ3X0) = 0 and g(∇ξX0, ϕ2X0) = 0.
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On the other hand, the assumption that D⊥-component of ξ is totally geo-
desic and (4.2) give

(4.12) q2(ξ1) = q3(ξ1) = 0 .

Let us differentiate the formula (4.9) along the direction of ξ1. Then by virtue
of the formulas (2.3), (2.4), (2.5) and (4.12), we have

(4.13) ϕ1ϕ∇ξ1X0 = η(ξ1)∇ξ1X0 .

On the other hand, by taking the inner product (4.10) with ϕ2X0, ϕ3X0

respectively and using (2.1), (2.7) and (4.11) respectively we have

(4.14) q2(ξ) = 0 and q3(ξ) = 0.

Then (4.10) implies that

(4.15) ϕ1ϕ∇ξX0 = η(ξ1)∇ξX0.

Moreover, by differentiating (4.8) along the direction of ξ and using (2.3), (2.4),
(2.5) and (4.14), we have

ϕ∇ξX0 = αη1(ξ)η(X0)ξ1 − η1(ξ)ϕ1∇ξX0.

From this, by applying ϕ and using (4.15) we have

(4.16) ∇ξX0 = −αη(ξ1)ϕ1X0.

Now differentiating (4.8) along the direction ξ1 and using (2.3) and (2.5), we
have

αη(X0)ξ1 + ϕ∇ξ1X0 = −η1(ξ)ϕ1∇ξ1X0.

Similarly, by applying ϕ to above equation and using (4.13) we have

(4.17) ∇ξ1X0 = αϕ1X0.

Then (4.16) and (4.17) give

(4.18) ∇ξX0 = −η(ξ1)∇ξ1X0.

On the other hand, we know that

(4.19)

∇ξX0 = ∇η(X0)X0+η(ξ1)ξ1X0

= η(X0)∇X0
X0 + η(ξ1)∇ξ1X0

= η(ξ1)∇ξ1X0,

because the D-component of the Reeb vector field ξ is totally geodesic. From
(4.18) and (4.19) we see that η(ξ1)∇ξ1X0 = 0. This means that ∇ξ1X0 =
0. From this together with (4.17), it follows that ϕ1X0 = 0. This gives a
contradiction. So we only have ξ ∈ D or ξ ∈ D⊥. □
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5. Lie parallel normal Jacobi operator for ξ ∈ D⊥

In order to give a complete proof of Theorem 2, first we consider the case that
the Reeb vector field ξ belongs to the distribution D⊥. Now in this direction
we introduce some lemmas given in Jeong and Suh [6] as follows:

Lemma 5.A. Let M be a real hypersurface in G2(Cm+2) satisfying Lie ξ-
parallel normal Jacobi operator and ξ ∈ D⊥. Then Aξ = αξ + βU , where U is
a unit vector field orthogonal to ξ and belongs to D.

Moreover, from Lemma 5.A, they proved the following lemmas:

Lemma 5.B. Let M be a real hypersurface in G2(Cm+2) satisfying Lie ξ-
parallel normal Jacobi operator and ξ ∈ D⊥. Then β identically vanishes, that
is, the Reeb vector field ξ is principal.

Lemma 5.C. Let M be a real hypersurface in G2(Cm+2) satisfying Lie ξ-
parallel normal Jacobi operator and ξ ∈ D⊥. Then g(AD,D⊥) = 0.

From these lemmas we assert:

Lemma 5.1. Let M be a real hypersurface in G2(Cm+2) satisfying Lie parallel
normal Jacobi operator and ξ ∈ D⊥. Then the Reeb vector ξ is principal and
g(AD,D⊥) = 0.

Before going to give our proof of Theorem 2 in the introduction, let us check
“What kind of model hypersurfaces given in Theorem A satisfy Lie parallel
normal Jacobi operator.” In other words, it will be an interesting problem
to know whether there exist real hypersurfaces in G2(Cm+2) satisfying the
condition LXR̄N = 0 for ξ ∈ D⊥.
Then by virtue of Lemmas 5.1, we are able to recall the proposition given by
Berndt and Suh [3] as follows:
For a tube of type (A) in Theorem A we have the following:

Proposition A. Let M be a connected real hypersurface of G2(Cm+2). Sup-
pose that AD ⊂ D, Aξ = αξ, and ξ is tangent to D⊥. Let J1 ∈ J be the almost
Hermitian structure such that JN = J1N . Then M has three (if r = π/2

√
8)

or four (otherwise) distinct constant principal curvatures

α =
√
8 cot(

√
8r), β =

√
2 cot(

√
2r), λ = −

√
2 tan(

√
2r), µ = 0

with some r ∈ (0, π/
√
8). The corresponding multiplicities are

m(α) = 1, m(β) = 2, m(λ) = 2m− 2 = m(µ),

and the corresponding eigenspaces we have

Tα = Rξ = RJN = Rξ1,

Tβ = C⊥ξ = C⊥N = Rξ2⊕Rξ3,
Tλ = {X|X⊥Hξ, JX = J1X},
Tµ = {X|X⊥Hξ, JX = −J1X},
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where Rξ, Cξ and Hξ respectively denotes real, complex and quaternionic span
of the structure vector ξ and C⊥ξ denotes the orthogonal complement of Cξ in
Hξ.

In the proof of Lemma 5.C (See Section 4 in [6]) we have asserted that

Aξ2 = 0 and Aξ3 = 0. But the principal curvature β =
√
2 cot(

√
2r) given in

Proposition A is never vanishing for any r ∈ (0, π
4 ). So this gives a contra-

diction. Accordingly, we completed the proof of our Theorem 2 for the case
ξ ∈ D⊥.

6. Lie parallel normal Jacobi operator for ξ ∈ D

Next we consider the case that the Reeb vector field ξ belongs to the dis-
tribution D. Then in this section we introduce the following lemmas due to
Jeong and Suh [6] for hypersurfaces in G2(Cm+2) with Lie ξ-parallel normal
Jacobi operator.

Lemma 6.A. Let M be a real hypersurface in G2(Cm+2) satisfying Lie ξ-
parallel normal Jacobi operator and ξ ∈ D. Then the Reeb vector ξ is principal.

Then by using Lemma 6.A, Jeong and Suh [6] also verified the following:

Lemma 6.B. Let M be a real hypersurface in G2(Cm+2) satisfying Lie ξ-
parallel normal Jacobi operator and ξ ∈ D. Then g(AD,D⊥) = 0.

By virtue of these Lemmas 6.A and 6.B we have

Lemma 6.C. Let M be a real hypersurface in G2(Cm+2) satisfying Lie parallel
normal Jacobi operator and ξ ∈ D. Then the Reeb vector field ξ is principal
and g(AD,D⊥) = 0.

From this Lemma 6.1, together with Theorem A due to Berndt and Suh
[3], we have that M is locally a tube over a totally geodesic and totally real
quaternionic projective space HPn, m = 2n. So for the geometrical structure
of such a tube we recall the following proposition.

Proposition B. Let M be a connected real hypersurface of G2(Cm+2). Sup-
pose that AD ⊂ D, Aξ = αξ, and ξ is tangent to D. Then the quaternionic
dimension m of G2(Cm+2) is even, say m = 2n, and M has five distinct con-
stant principal curvatures

α = −2 tan(2r), β = 2 cot(2r), γ = 0, λ = cot(r), µ = − tan(r)

with some r ∈ (0, π/4). The corresponding multiplicities are

m(α) = 1, m(β) = 3 = m(γ), m(λ) = 4n− 4 = m(µ)

and the corresponding eigenspaces are

Tα = Rξ, Tβ = JJξ, Tγ = Jξ, Tλ, Tµ,

where
Tλ ⊕ Tµ = (HCξ)⊥, JTλ = Tλ, JTµ = Tµ, JTλ = Tµ.
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Now, using the assumption that M is Hopf in (3.4), we have the following

(LξR̄N )Y

= 4α
∑3

ν=1
g(ϕνξ, Y )ξν + 4α

∑3

ν=1
ην(Y )ϕνξ

− 3
∑3

ν=1
ην(Y )ϕAξν + 3

∑3

ν=1
ην(ϕAY )ξν

+
∑3

ν=1

{
ην(ξ)

(
ϕAϕνϕY − η(Y )ϕAξν

)
− ην(ϕY )ϕAϕνξ

}
+
∑3

ν=1

{
ην(ξ)

(
ϕνAY − αη(Y )ϕνξ

)
− ην(AY )ϕνξ + η(AY )ην(ξ)ϕνξ

}
= 0 .

Moreover, using the fact that the Reeb vector field ξ belongs to the distribution
D, we have

(6.1)

(LξR̄N )Y = 4α
∑3

ν=1
g(ϕνξ, Y )ξν + 4α

∑3

ν=1
ην(Y )ϕνξ

− 3
∑3

ν=1
ην(Y )ϕAξν + 3

∑3

ν=1
ην(ϕAY )ξν

−
∑3

ν=1
ην(ϕY )ϕAϕνξ −

∑3

ν=1
ην(AY )ϕνξ

= 0

for any Y ∈ TxM , x ∈ M .
Let us construct a sub-distribution D0 of the distribution D in such a way

that

[ξ]⊕D0 = D,

where [ξ] denotes an one-dimensional vector subspace spanned by the Reeb
vector field ξ. Then D0 becomes D0 = {Y ∈ D |Y⊥ξ}. Here, if we substitute
any Y ∈ D0 in (6.1) and use ξ ∈ D, the left side of (6.1) becomes

(LξR̄N )Y = 4α
∑3

ν=1
g(ϕνξ, Y )ξν + 3

∑3

ν=1
ην(ϕAY )ξν

−
∑3

ν=1
ην(ϕY )ϕAϕνξ −

∑3

ν=1
ην(AY )ϕνξ.

From this, putting Y = ϕµξ ∈ Tγ , and using Aϕµξ = 0, µ = 1, 2, 3, given in
Proposition B, it becomes

(LξR̄N )ϕξµ = 4αξµ.

From this, with the assumption of LξR̄N = 0, we have α = 0. But the principal
curvature α = −2 tan(2r) in Proposition B never vanishes for r ∈ (0, π

4 ). This
gives a contradiction for the case ξ ∈ D. Accordingly, we complete the proof
of our Theorem 2 for ξ ∈ D in the introduction.
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[7] H. Lee, J. D. Pérez, F. G. Santos, and Y. J. Suh, On the structure Jacobi operator
of a real hypersurface in complex projective space, Monatsh. Math. 158 (2009), no. 2,

187–194.
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