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Abstract

B.Widrow established fundamental relations between
the least-mean-square (LMS) algorithm and the digital
Fourier transform [1]. By extending these relations, we

_ proposed the short time spectra analysis system using

the LMS algorithm {2]. In that paper, we used the nor- -

mal LMS algorithm on the thought of dealing with only

real analytical signal. This algorithm minimizes the real

mean-square by recursively altering the complex weight
vector at each sampling instant. But, the short time spec-
tra analysis sometimes deals with the complex signal that
is outputted from complex analog filter. So, in order to
optimize and develop this methods, furthermore it is nec-
essary to derive an algorithm for the complex analytical
signal. In this paper, we first discuss the new adaptive
system for the spectra analysis using the complex LMS al-
gorithm and then derive convergence condition, time con-
stant of coeflicient adjustment and frequency resolution
by extending the discussion. Finally, the effectiveness of
the proposed method is experimentally demonstrated by
applying it to the measurement of transfer performance
on complex analog filter.

1. Introduction

Frequency response method is a useful and simple

method to measure the transfer performance on a sys-

tem. In this method, the peak-to-peak value of input °

and output signals is read and then transfer performance
is analyzed from the ratio of them. This method also
" has some problems as follows: First, the lower the ra-
tio between signal and noise becomes, the more difficult
the accurate measurement becomes. Second, measuring

times are generally said to be long. Further, if input sig-
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nals consist of real signal and output signals consist of
complex signal, then transfer performances such as gains
and phases can’tn be gotten. In the reference [3], we pro-
posed the real time measurement of transfer performance
using SIMULINK, which could resolve the first and sec-
ond problems. But, we used the normal LMS algorithm
on the thought of dealing with only real analytical sig-
nal. So, we could’t solve the final problem. In order to
optimize and develop the short time spectra analysis sys-
tem using the LMS algorithm, further it is necessary to
derive an algorithm for the complex analytical signal. In
this paper, we first discuss the new adaptive system for
the spectra analysis using the complex LMS algorithm
and, then we derive convergence condition, time constant
of coefficient adjustment and frequency resolution by ex-
tending the discussion. Finally, the effectiveness of the
proposed method is experimentally demonstrated by ap-
plying it to the measurement of transfer performance on

complex analog filter.

2. Derivation of the optimum Fourier
coefficient vector

The complex LMS algorithm to analyze the complex
signals is similar to the LMS algorithm to analyze the real
signals (2], except that the rules of complex algebra must
be taken into account. Fig. 1 shows the short time spec-
tra analysis system using the complex LMS algorithm. In
this figure, G(k) and W (k) are Fourier coefficient vector
and input signal vector of the adaptive system, and are

given by
G = [G1,Gz,-+Gn]T (1)
X(k) = [exp(j2m f1kT), exp(j2n f2kT),
-+ exp(§2m fakT)) (2)
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Fig.1 Spectra analysis system with the complex LMS algo-
rithm.

where f; is frequency. The output signal at time k is

y(k) = GTX(k) = XT (k)G (3)

The complex error signal (k) required for adaptive is de-
fined as the difference between the desired response d(k)
and output signal y(k):

e(k) = d(k) - g(k)
= d(k) - GT X (k) (4)
The conjugate of the complex error is
e(k) = d(k) - GTX (k) (5)

where the bar above e(k) designates the complex conju-
gate. The complex LMS algorithm for the short time spec-
tra analysis system must be able to be adapted to the real
and imaginary parts of G(k) simultaneously, minimizing
in some sense both eg(k) and e;(k). A resonable objective

is to minimize the average total error power Efe(k)é(k)],
Ele(k)é(k)) = Elekx + €3] = Elehi] + Ele34]  (6)

where E designates expected value. Since the two compo-
nents of the error are quadrate relatives to each other,
Substituting
equ.(4) and(5) into this equation, we can obtain the fol-

they can’t be minimized independently.

lowing equation.
Ele(k)e(k)] = E[{d(k) - GT X (k)}

{d(k) - GT X (k)}]

E[d(k)d(k)] - E[d(k) X (k))G

—E[d(k)XT (k)G

+GTEX (k) XT (k)G

)

Spectra Analyzed Data
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The gradient of E[e(k)&(k)) is
OE[e(k)&(k)]
oG
—Eld(k) X7 (k)] + E[X (k) X (k)]G
where E[{X (k)X T (k)] is
E[X (k)X (k)]
exp(j2r f1kT)
exp(j2m f2kT)

V =

(8)

exp(j27 fukT)

(exp(-j21rf1kT), """ )

1 exp(j2n(fi — f2)kT)
: 1

exp(j2n(f1 — fn)kT)
exp(j2n(fz — fn)kT)

1
=17 (9)

From this equation, we can get the optimum coefficient
vector solution as follow, where the average total error
power E[e(k)&(k)] is minimized.

G" = Eld(k) X (¥)] (10)

3. Derivation of the complex LMS
algorithm

To develop the complex LMS algorithm from an adap-
tive algorithm using the previous section’s method, we
would have to estimate the gradient of Ele(k)é(k)] by
taking instantaneous error e(k)&(k). The instantaneous
gradient of e(k)&(k) with respect to the real component

of the coefficient vector is

Va(e(k)e(k)) = a_eg:iﬂ

e(k)Vr(E(K)) + & Vr(e(k))
(k) (- X (k)) + &(k)(-X (k)) (11)

The instantaneous gradient of e(k)&(k) with respect to

the imaginary component of the coefficient vector is
Va(e(k)e(k)) = e(k) (5 X (k) + &(k)(—3 X (k) (12)

Applying the method of steepest descent to the real and
imaginary parts of the coefficient vector by chaining them



along their respective negative gradient estimations, we

obtain
Gr(k+1) = Gr(k) — pVr(e(k)&e(k)). (13)
Gi(k+1) = Gy(k) — pV (e(k)a(k)) (14)

Since the complex coefficient vector is G(k) = Gr(k) +
G (k), the complex coefficient vector iteration rule can

be expressed as
G(k +1) = G(k) — u[Vr(e(k)é(k))
+5V s (e(k)é(k))) (15)
If the gradients (11) and {12) are now substituted in (15),

the complex form of the LMS algorithm for short time
spectra analysis system results:

G(k +1) = G(k) + 2pe(k) X (k) (16)

where p is a convergence factor controlling stability and

adaptation.
4. Convergence Condition

4.1 Coefficient vector

In this paper, we assume coefficient vector G(k) to be
independent of input vector X (k). Taking the expected
value of equ.(16) yields the difference equation as follows:

E[G(k +1)] = E[G(K)] + 2uE[e(k) X (k)]
= E[G(k)] + 2uE[X (k){d(k)
~-XT(K)G(k)}]
= (1 - 2WE[G(K)] + 24G" 17)

Now we can define the coefficient error vector C(k) as
C(k) =G(k)—G". So equ.(17) becomes
E[C(K)] = (1 - 2w)E[C(k - 1]
= (1-21)"E[C(0)] (18)

Thus as k increases without bound, the expected coeffi-
cient vector reaches the optimum solution when the right
side of this equation converges to zero as follows:

lim (1 —2p)* =0 (19)
k—oo
where p is a positive value. Such convergence is guaran-

teed only when

0<y<% . (20)

4.2 Learning curve

In equ.(19), we have bounds on u that the convergence
of the coefficient vector means to the optimum coefficient
vector. But we don’t have bounds on p that the conver-
gence of the mean-square-error §x = E[e(k)&(k)] means to
the minimum mean-square-error min. From the reference
[2], the mean-square-error £, and minimum mean-square-

error £min become

&k = &min + E[CT(K)C (k)] (21)

Emin = E[d*(K)] - G*TG" (22)
Thus as k increases without any bound, the mean-square-
error £ reaches the minimum mean-square-error &min

only when E[C7 (k)C (k)] converges to zero. So, such con-
vergence is guaranteed only when

E[CT(k+1)C(k+1)] -E[CT(k)C(k)] <0  (23)
Substituting equ.(16) and (18) into this equation, we can
obtain the following equation.

E[CT(k+1)C(k + 1)] - E[CT (k)C(K)]

= E{G(k) + 2uex X (k)} - G*}"
{G(k) + 2ue(k) X (K)} - G"}
-E[{G(k) - G"}'{G(k) - G"}]
E[—4ue(k)e(k) + 4pPe(k)e(k) X T (k) X (k)]
—4p(1 - pN)E[e(k)&(k)) < 0 (24)

where N is the number of coefficients. In this equation,
p > 0 and E[e(k)&(k)] > 0. So, such convergence is guar-
anteed only when

1
0 =
<p< N (25)
4.3 Convergence condition
From equ.(20) and (25}, convergence condition becomes
0<m<% for N=1
O<pi<p for N>2

5. Time Constant of Coefficient Adjustment

(26)

The spectra analysis system proposed in this paper
is used to the LMS algorithm, so the number of sam-
pling data (desired responses), which are reguired to an-
alyze the spectral component of signals, can be deter-
mined by the time constant of coefficient adjustment.
From equ.{20), the coefficient vector becomes geometric
sequence of the geometric rate 1 — 2. Now, we can con-
struct an exponential envelope through the geometric se-
quence of the samples. Let the envelope be described by
exp(=T), then we can write

exp(—-) = 1 - 21 (27)

where T represents the sampling time and 7 represents
the time constant. When 7 is large (100 or greater) and
1 — 24 is small (less than but near 1), the following equa-

tion is a useful approximation

1-2u1-— g (28)
So we have the time constant of coefficient adjustment as
follows:

r= (29)

2p



From this equation, we can understand that the time con-
stant of coefficient adjustment is inverse proportional to

the parameter of convergence factor u.
6. Resolution in Frequency

Substituting equ.(16) into (4), and taking the expected
value of this equation, we can obtain the following equa-
tion.

BIG(k + 1)) = (1 - 20)E[G (k)] + BIX (K)d(k)] (30)
Now, the i’th element G;(k) of the coefficient vector G(k)
is considered as follows:

E[Gi(k + 1)) = (1 - 2u)E[Gi(k)] + E[X:(k)d(k)] (31)

The transfer performance of this equation becomes

Hi(s) = %((:))

_ 2u ‘
T G U2 - ey meeen) ()

Assuming T to be small, the following equation is a useful

approximation:
z = exp(sT)=1+4sT + —21-!(3T)2 o
=1+sT (33)
Therefor equ.(32) becomes

2ufs
T+ 2m)(s — 727 F7)

where f, is the sampling frequency (). Now Q-value of
i’th element is defined as Q; = -2[;‘7, where f; is the i’th

frequency component of input signal vector. 2x; means

Hi(s) = (34)

the full width of the frequency where the amplitude is

one-half of the maximum value. From reference (4], Q:
becomes

Qi mf;

21fs

From this equation, we get the fact that resolution in the

(35)

frequency is proportional to the frequency component of
input signal vector and is inverse proportional to the pa-

rameter of the convergence factor.

7. Complex analog filter and analysis

method

- Another purpose of this study is to analyze the transfer
performance of Complex coefficient analog filter. Hence in
this section, we will describe a complex analog filter and
analysis method for transfer performance of a complex
analog filter.

7.1 Complex analog filter

Complex coefficient digital filters, with applications for
processing real sequences, have been investigated. The
method allows any real rational transfer function to be
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X1(s) [ G(s) W r(s)
Xi(s)  G(s) | Wi(s)

Fig.2 Equivalent circuit for complex analog filter.

expressed in terms of a complex rational transfer function

‘of reduced order. Being implemented in complex hard-
ware form, the reduction of filter order can provide an
.increase in computational efficiency and speed. From the
.same reason, complex coefficient analog filters have been
‘investigated. In general, the method converting a real co-

efficient filter into a complex filter with an unsymmetrical

‘frequency response is used, and the output signal from

this complex filter is complex signal. Consider the com-
plex filter C(s) = G(s) + jH(s), where G(s) and H(s) are
conjugate-symmetric and cofljugate-antisymmetric parts
of C(s), respectively. We may express c(t) = g(t) + jh(t)
as the corresponding complex impulse response, where the
Dirac delta impulse function is real by definition. Letting
z(t) =

complex filter, where zr(t) and zs(t) are real signals, the

zr(t) + jzs(t) denote the complex input to the

complex output w(t) becomes

[9(t) ® zr(t) — h(t) ® z4(t))
+ilg(t) ® z4(t) + h(t) ® zr(t))
wr(t) + jwi(t)

w(t)

il

(36)

where wg(t) and wy(t) are real signals, and ® denotes
convolution. The Laplace transform of equ.(36) yields a
reai-equivalent system representation
Wr(s)] _ [G(s) —H(s)] [Xr(s)
[w,(s)] B ;[H(s) G(s) ] [xa(s)]
for C(s) = G(s) + jH(s). Fig. 2 shows equivalent circuit

for complex analog filter,

(87)

7.2 Analysis method

The purpose of this study is to analyze the transfer per-
formance of Complex coeflicient analog filter. Frequency
response method is a useful method to analyze transfer
performance. It is widely used because it is easy to use.
In this method, the peak-to-peak value of input and out-
put signals is measured and then transfer performance is
analyzed from the ratio of them. This method also has
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Fig.3 Spectra analysis system for the purpose of analyzing

transfer performance of complex coefficient analog fil-
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Fig.4 Circuit realization of the complex coefficient analog -

filter.

some problems as follows: First, input and output signals
are complex signals, and the lower the ratio between signal
and noise becomes, the more difficult the accurate mea-
surement becomes. Second, measuring times are generally
said to be long. When transfer performance is analyzed
using FFT, spectral leakage occurs by virtue of side lobe.
Hence accurate analysis of transfer performance is diffi-
cult. To overcome these problems, we used the short-term :
analysis using the LMS algorithm. we assumed that the
input signal of Complex coefficient analog filter is complex
exponential function, equ.(36) becomes as follows,

w(t) = c(t) exp(2~ ft) (38)

This equation is equal to equ.(3), so we can analyze trans-
fer performance complex coefficient analog filter by using

the spectra analysis system as shown in Fig. 3.
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Fig.5 Comparison between experimental results and com-
puted results of equ.(39))

8. Experiment

Fig. 4 shows the circuit realization of the complex co-
efficient analog filter which was used in this experiment.
The complex transfer performance of this circuit realiza-
tion becomes

C(s) = 1.000E%S + (2.528E* + j5.051E®)
T 82+ 5.057E3S + 2.557E7
Fig. 5 shows the Comparison between the experimental

(39)

results and the compued results of equ.(39). From this fig-
ure, the experimental results of the proposed system are
similar to the results of the computed results of equ.(39).

9. Conclusions

The main points of this study are summarized as fol-
lows:
(1) We can constract the spectra analysis using the LMS
algorithm by extending the discussion to the fundamen-



tal relations between the LMS algorithm and the digital
Fourier transform established by B.Widrow [1].

(2) We assumed the coefficient vector G(k) to be inde-
pendent of input vector X (k). In addition to it, taking
the expected value of equ.(4), we had bounds on u that
the convergence of the coefficient vector means to the op-
timum coefficient vector and leaning curve.

(3) We derived that both the time constant of coeffi-
cient adjustment and the resolution in frequency are in-
verse proportional to the parameter of convergence factor
.

(4)Applying of short-term spectrum analysis using the
LMS algorithm to the frequency response method, we
could measure transfer performances. And experimental
results using this method were in good agreement with
the results of computed results of equ.(39).
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