• Title/Summary/Keyword: Complex resistivity

Search Result 96, Processing Time 0.026 seconds

Microstructure and Magnetic Properties of Pulsed DC Magnetron Sputtered Zn0.8Co0.2O Film Deposited at Various Substrate Temperatures (증착온도를 달리하여 제조한 Zn0.8Co0.2O 박막의 미세조직 및 자기 특성)

  • Kang, Young-Hun;Kim, Bong-Seok;Tai, Weon-Pil;Kim, Ki-Chul;Suh, Su-Jeung;Park, Tae-Seok;Kim, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.2 s.285
    • /
    • pp.79-84
    • /
    • 2006
  • We studied the microstructure and magnetic property of the pulsed DC magnetron sputtered $Zn_{\0.8}Co_{0.2}O$ film as a function of substrate temperatures. The X-ray patterns of the $Zn_{\0.8}Co_{0.2}O$ film showed a strong (002) preferential orientation at $500^{\circ}C$. The films with a crystallite size of 23-35 nm were grown in the form of nano-sized structure and this tendency was remarkable with increasing substrate temperature. The UV-visible result showed that the $Zn_{\0.8}Co_{0.2}O$ film prepared above $300^{\circ}C$ has a high optical transmittance of over $80\%$ in the visible region. The absorption bands were observed due to sp-d interchange action by $Co^{2+}$ complex ion and dd transition in the region from 500 to 700nm. The resistivity of the film was below $10^{-1}\;\Omega-cm\;above\;300^{\circ}C$. The AGM analysis results for the all films showed the magnetic hysteresis curves of ferromagnetic nature. The low electrical resistivity and room temperature ferromagnetism of ZnCoO thin films 'deposited above $300^{\circ}C$ suggested the possibility for the application to Diluted Magnetic Semiconductors (DMSs).

A Case study on the construction of a long tunnel in the youngdong railroad (Mt. Dongbaek-Dokye) (영동선 동백산-도계간 장대터널 시공사례 연구)

  • Kim, Yong-Il;Yoon, Young-Hoon;Cho, Sang-Kook;Yang, Jong-Hwa;Lee, Nai-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.2
    • /
    • pp.155-165
    • /
    • 2002
  • This paper presents a case study on the construction of a long tunnel named as "Solan tunnel", which connects between Mt. Dongbaek station and Dokye station in the Youngdong Railroad. The tunnel will be the longest tunnel with length of 16.4 km in Korea when completed. The tunnel site is located in a complex geological region with faults, cavities and coal measures. In construction of adit No. 2, geophysical investigation methods such as electrical resistivity method and GPR(Ground Penetration Radar) were used to detect faults, cavities and coal measures in advance with some success. The geophysical investigation results and in-situ boring data were used as feedback to improve tunnel reinforcement design. Also, the tube umbrellas of grouted steel pipes were found to have a good reinforcement and grouting effects in zones of faults, cavities. In zones of coal measures, swellex rockbolts with mortar grouting were verified as successful.

  • PDF

Fabrication of Optically Encoded Images on Porous Silicon (다공성 실리콘을 이용한 암호화된 광학이미지 제작)

  • Koh, Young-Dae;Kim, Sung-Jin;Kim, Jong-Hyeon;Rheu, Seong-Ok;Bang, Hyeon-Seok;Jeong, Yun-Sik;Park, Bo-Kyeong;Sohn, Hong-Lae
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.46-50
    • /
    • 2008
  • Optical images on the porous silicon exhibiting Febry-Perot fringe pattern have been prepared by using an electrochemical etching of p-type silicon wafer (boron-doped,<100> orientation, resistivity $0.8{\sim}1.2m{\Omega}-cm$) and beam projector. The images remained in the substrate displayed an optical images correlating to the optical pattern and could be useful for optical data storage. A decrease in the effective optical thickness of the Febry-Perot layers was observed, indicative of a change in refractive index induced by exposing of porous silicon to the white light. This provides the ability to fabricate complex optical encoding in the surface of silicon.

Study of geological structure in area of Hwasan caldera using geophysical method (지구물리학적 방법에 의한 화산 칼데라 지역의 지질구조 연구)

  • Kwon, Byung-Doo;Lee, Heui-Soon;Yang, Joon-Mo;Park, Gye-Soon;Eom, Joo-Young;Kim, Dong-Oh
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.267-272
    • /
    • 2007
  • Uiseong subbasin belonging to Kyungsang basin resulted from volcanic activity in the late Cretaceous. In this study, we carry out MT and gravity survey at the Hwasan caldera, which was formed of volcanic and abyssal rocks complex, then analyze and identify geological substructure. Potential survey such as gravity and magnetic survey has been mainly carried out in former studies, so depth information for understanding substructure was not enough. To complement a potential survey, we use MT method, which has high vertical resolution. Moreover we make a simple 2D model comparing with former study. The result of MT and gravity 2D modeling shows that this area is roughly composed of 3 layers; The bottom layer is a basement. In the second layer, intrusive rocks having high resistivity is placed along the ring faults and the sedimentary layer of low resistivity is inside caldera. The highest layer is alluvium. To comprehend the 3D structure of the Hwasan caldera, we perform 3D gravity inversion, and construct the 3D model from the result of 3D gravity inversion. MT responses are calculated by using the constructed 3D model and the 3D model of the Hwasan caldera's structure is suggested after comparing the calculated values with the observed values at MT line.

  • PDF

Improvement of the Resistivity in High Field for the New Piezoelectric Compositions in the Bi(NiaX1-a)O3-PbTiO3(X=Ti,Nb) System (Bi(NiaX1-a)O3-PbTiO3 계 압전 신조성(X-Ti,Nb)의 내전압 특성 향상)

  • Choi, Soon-Mok;Seo, Won-Seon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.4
    • /
    • pp.220-225
    • /
    • 2008
  • Lead-free ferroelectric ceramics are widely researched today for industrial applications as sensors, actuators and transducers. Since $Pb(Zr_aTi_{1-a})O_3$-(PZT) has high Curie temperature($T_C$), high piezoelectric properties near its morphotropic phase boundary(MPB) composition and small temperature dependence electrical behavior, it has been used to commercial materials for wide temperature range and different application fields. According to the tolerance factor concept, since the $Bi^{3+}$ cation with 12-fold coordinate has a smaller ionic radius than 12-fold coordinate $Pb^{2+}$, most bismuth based perovskites possess a smaller tolerance factor. Therefore, MPBs with a higher $T_C$ may be expected in $Bi(Me^{3+})O_3PbTiO_3$ solid solutions. As in lead based perovskite systems, it is clear that we need to explore more materials in simple or complex bismuth based MPB systems. The objective of this study is to investigate the $Bi(Ni_{1_a}X_a)O_3-PbTiO_3(X=Ti^{4+},\;Nb^{5+})$ perovskite solid-solution. For improving the electronic conduction problem, the magnesium and manganese modified system was also studied.

A Study on the Safety Characterization Grounding Design of the Inner Photovoltaic System (태양광 발전단지 내부 그리드의 안전 특성화 접지 설계에 관한 연구)

  • Kim, Hong-Yong;Yoon, Suk-Ho
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.2
    • /
    • pp.130-140
    • /
    • 2018
  • Purpose: In this paper, we propose a design technique for the safety characterization grounding in the construction of the photovoltaic power generation complex which can be useful and useful as an alternative power energy source in our society. In other words, we will introduce the application of safety grounding for each application, which can improve and optimize the reliability of the internal grid from the cell module to the electric room in the photovoltaic power generation complex. Method: We analyze the earth resistivity of the soil in the solar power plant and use the computer program (CDEGS) to analyze the contact voltage and stratospheric voltage causing the electric shock, and propose the calculation and calculation method of the safety ground. In addition, we will discuss the importance of semi-permanent ground electrode selection in consideration of soil environment. Results: We could obtain the maximum and minimum value of ground resistivity for each of the three areas of the data measured by the Wenner 4 - electrode method. The measured data was substituted into the basic equation and calculated with a MATLAB computer program. That is, it can be determined that the thickness of the minimum resistance value is the most favorable soil environment for installing the ground electrode. Conclusion: Through this study, we propose a grounding system design method that can suppress the potential rise on the ground surface in the inner grid of solar power plant according to each case. However, the development of smart devices capable of accumulating big data and a monitoring system capable of real-time monitoring of seismic changes in earth resistances and grounding systems should be further studied.

The Electrical Characteristics of the Grain Boundary in a $BaTiO_{3}$ PTC Thermistor ($BaTiO_{3}$ PTC 서미스터 입계의 전기적인 특성)

  • Kwon, Hyuk-Joo;Lee, Jae-Sung;Lee, Yong-Soo;Lee, Dong-Kee;Lee, Yong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.67-75
    • /
    • 1992
  • PTC thermistor has been fabricated with as-received $BaTiO_{3}$ powder and its electrical properties were investigated. The resistivity of the PTC thermistor was measured at $20^{\circ}C$ intervals from $20^{\circ}C$ to $200^{\circ}C$. The electrical characteristics of the PTC thermistor are determined by the ac complex impedance analysis. The average grain size measured with a scanning electron microscope increased from $3.8{\mu}m$ to $8.8{\mu}m$ with increasing sintering temperature between $1280^{\circ}C$ and $1400^{\circ}C$. The maximum resistivity jump was $4{\times}10^{5}$. The bulk resistivity of the thermistor sintered above $1340^{\circ}C$ decreased with increasing temperature of the measurement. The grain boundary resistance increased exponentially, the grain boundary capacitance decreased, and the built-in potential at the grain boundary increased with increasing temperature of the measurement. The charge densiy at the grain boundary increased with increasing temperature up to $110^{\circ}C$, which leveled off with further increase in measuring temperature.

  • PDF

Urban archaeological investigations using surface 3D Ground Penetrating Radar and Electrical Resistivity Tomography methods (3차원 지표레이다와 전기비저항 탐사를 이용한 도심지 유적 조사)

  • Papadopoulos, Nikos;Sarris, Apostolos;Yi, Myeong-Jong;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.56-68
    • /
    • 2009
  • Ongoing and extensive urbanisation, which is frequently accompanied with careless construction works, may threaten important archaeological structures that are still buried in the urban areas. Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) methods are most promising alternatives for resolving buried archaeological structures in urban territories. In this work, three case studies are presented, each of which involves an integrated geophysical survey employing the surface three-dimensional (3D) ERT and GPR techniques, in order to archaeologically characterise the investigated areas. The test field sites are located at the historical centres of two of the most populated cities of the island of Crete, in Greece. The ERT and GPR data were collected along a dense network of parallel profiles. The subsurface resistivity structure was reconstructed by processing the apparent resistivity data with a 3D inversion algorithm. The GPR sections were processed with a systematic way, applying specific filters to the data in order to enhance their information content. Finally, horizontal depth slices representing the 3D variation of the physical properties were created. The GPR and ERT images significantly contributed in reconstructing the complex subsurface properties in these urban areas. Strong GPR reflections and highresistivity anomalies were correlated with possible archaeological structures. Subsequent excavations in specific places at both sites verified the geophysical results. The specific case studies demonstrated the applicability of ERT and GPR techniques during the design and construction stages of urban infrastructure works, indicating areas of archaeological significance and guiding archaeological excavations before construction work.

Preparation and Characterization of the Multi-functional Complex Utilizing PCB Powder (PCB Powder를 이용한 다기능 복합체의 제조 및 특성)

  • Park, Byoung Ki
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.34-39
    • /
    • 2015
  • The feasibility of recycling wasted printed circuit board (PCB) is investigated by preparing PCB added flame retardant composites filled with either unsaturated polyester or polyurethane. In order to improve electroconductive properties, copper powder was added into the composites, which results also in improving their antistatic properties. The prepared composite samples showed a binding between the polymer fillers observed by a scanning microscope. The sample group using unsaturated polyester is elastomeric that led to appreciable elongation and elasticity. In case of polyurethane, the tensile strength increased proportionally as increase of the amount of PCB powder. The composite materials can be utilized as antistatic composite materials, since the surface resistivity result showed increase of the electroconductive properties by adding Cu. The flammability of the samples is not satisfactory according to UL-94 vertical test. However, the flame retardant properties were improved by adding PCB power. This study, therefore, showed that it is feasible to fabricate polymer composite materials and improve the material characteristics by adding PCB powder, which can replace existing additives used for the preparation of polymer composite materials and can reduce the environment contamination by recycling the wasted PCB.

Magnetic and Electrical Properties of Mn-Zn Ferrite Thin Films Deposited by Ion Beam Sputtering (이온빔 스퍼터링에 의해 증착된 Mn-Zn 페라이트 박막의 자기 및 전기적 특성)

  • 조해석;하상기;이대형;주한용;김형준;김경용;제해준;유병두
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.3
    • /
    • pp.313-320
    • /
    • 1995
  • We investigated the preferred orientation, electrical and magnetic properties of the Mn-Zn ferrite thin films deposited on SiO2/Si(100) by ion beam sputtering. The Cu-added Mn-Zn ferrite thin films had a preferred orientation of (111) with a weak orientation, (311). While the Zn-added one had a strong (111) preferred orientation. The saturation magnetization of the Cu- or Zn-doped Mn-Zn ferrite films increased with increasing substrate temperature (Ts) due to the increase of grain size and the enhancement of crystallinity. For the same reason the coercivity of Cu- or Zn-doped Mn-Zn ferrite films deposited at low Ts increased with increasing Ts, but those of the films deposited at high Ts slightly decreased not only because the defect density of the films decreases but because more grains have multi-domains with increasing Ts. The resistivity of Cu- or Zn-added Mn-Zn ferrite thin fims measured by complex impedance method decreased with increasing Ts due to the ehhancement of crystallinity as well as due to the increase of grain size.

  • PDF