Browse > Article
http://dx.doi.org/10.4191/KCERS.2008.45.4.220

Improvement of the Resistivity in High Field for the New Piezoelectric Compositions in the Bi(NiaX1-a)O3-PbTiO3(X=Ti,Nb) System  

Choi, Soon-Mok (Testing and Certification Division, Korea Institute of Ceramic Engineering & Technology)
Seo, Won-Seon (Testing and Certification Division, Korea Institute of Ceramic Engineering & Technology)
Publication Information
Abstract
Lead-free ferroelectric ceramics are widely researched today for industrial applications as sensors, actuators and transducers. Since $Pb(Zr_aTi_{1-a})O_3$-(PZT) has high Curie temperature($T_C$), high piezoelectric properties near its morphotropic phase boundary(MPB) composition and small temperature dependence electrical behavior, it has been used to commercial materials for wide temperature range and different application fields. According to the tolerance factor concept, since the $Bi^{3+}$ cation with 12-fold coordinate has a smaller ionic radius than 12-fold coordinate $Pb^{2+}$, most bismuth based perovskites possess a smaller tolerance factor. Therefore, MPBs with a higher $T_C$ may be expected in $Bi(Me^{3+})O_3PbTiO_3$ solid solutions. As in lead based perovskite systems, it is clear that we need to explore more materials in simple or complex bismuth based MPB systems. The objective of this study is to investigate the $Bi(Ni_{1_a}X_a)O_3-PbTiO_3(X=Ti^{4+},\;Nb^{5+})$ perovskite solid-solution. For improving the electronic conduction problem, the magnesium and manganese modified system was also studied.
Keywords
Piezoelectric$Bi_2O_3$; Resistivity; Acceptor;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 R. E. Eitel, C. A. Randall, T. R. Shrout, P. W. Rehrig, W. Hackenberger, and S. E. Park, "New High Temperature Morphotropic Phase Boundary Piezoelectrics Based on $Bi(Me)O_3-PbTiO_3$ Ceramics" J. J. Appl. Phys., 40 5999- 6002 (2001).   DOI
2 Nicola A. Hill and Karin M. Rabe, "First-principles Investigation of Ferromagnetism and Ferroelectricity in Bismuth Manganite," Phys. Rev., B 59 8759-69 (1999).   DOI   ScienceOn
3 R. E. Eitel, C. A. Randall, T. R. Shrout, and S. E. Park, "Preparation and Characterization of High Temperature Perovskite Ferroelectrics in the Solid-Solution $(1-x)BiScO_3-xPbTiO_3$," J. J. Appl. Phys., 41 2099-104 (2002).   DOI
4 T. Song, R. E. Eitel, T. R. Shrout, C. A. Randall, and W. Hackenberger, "Piezoelectric Properties in the Perovskite $BiScO_3-PbTiO_3-(Ba,Sr)TiO_3$ Ternary System," J. J. Appl. Phys., 42 5181-84 (2003).   DOI
5 Y. Inaguma, A. Miyaguchi, M. Yoshida, and T. Katsumata, "High-pressure Synthesis and Ferroelectric Properties in Perovskite-type $BiScO_3-PbTiO_3$ Solid Solution," J. Appl. Phys., 95 [1] 231-35 (2004).   DOI   ScienceOn
6 C. A. Randall, R. Eitel, B. Jones, T. R. Shrout, D. I. Woodward, and I. M. Reaney, "Investigation of a $High-T_C$ Piezoelectric System: $(1-x)Bi(Mg_{1/2}Ti_{1/2})O_3-(x)PbTiO_3 $," J. Appl. Phys., 95 [7] 3633-39 (2004).   DOI   ScienceOn
7 D. K. Kwon, C. A. Randall, T. R. Shrout, and M. T. Lanagan, "Dielectric Properties and Relaxation in $(1-x)BiScO_3-xBa(Mg_{1/3}Nb_{2/3})O_3$ Solid Solutions," J. Am. Ceram. Soc., 87 [6] 1088-92 (2004).   DOI   ScienceOn
8 R. E. Eitel, S. J. Zhang, T. R. Shrout, C. A. Randall, and I. Levin, "Phase Diagram of the Perovskite System $(1-x)BiScO_3-xPbTiO_3$," J. Appl. Phys., 96 2828-31 (2004).   DOI   ScienceOn
9 C. A. Randall, R. E. Eitel, C. Stringer, T. H. Song, S. J. Zhang, and T. R. Shrout, "High Performance, High Temperature Perovskite Piezoelectric Ceramics in Piezoelectric Single Crystals," (S. Trolier-McKinstry, Ed. 2004).
10 M. R. Suchomel and P. K. Davies, "Predicting the Position of the Morphotropic Phase Boundary in High Temperature $PbTiO_3-Bi(B Based Dielectric Ceramics," J. Appl. Phys., 96 [8] 4405-10 (2004).   DOI   ScienceOn
11 Y. Shimojo, R. Wang, T. Sekiya, T. Nakamura, and L.E. Cross, "MPB Phase Diagram and Ferroelectric Properties in the $PbTiO_3-BiScO_3$ System," Ferroelectrics, 284 121-28 (2003).   DOI   ScienceOn
12 C. J. Stringer, R. E. Eitel, T. R. Shrout, C. A. Randall, and I. M. Reaney, "Phase Transition and Chemical Order in the Ferroelectric Perovskite $(1-x)Bi(Mg_{3/4}W_{1/4})O_3-xPbTiO_3$ Solid Solution System," J. Appl. Phys., 97 024101 (2005).   DOI   ScienceOn
13 Y. Inaguma, A. Miyaguchi, and T. Katsumata, "Synthesis and Lattice Distortion of Ferroelectric/antiferroelectric Bi(III)-containing Perovskites," Mat. Res. Soc. Symp. Proc., 755 471-76 (2003).
14 G. Y. Yang, G. D. Lian, E. C. Dickey, C. A. Randall, D.E. Barber, P. Pinceloup, M. A. Henderson, R. A. Hill, J. J. Beeson, and D. J. Skamser, "Oxygen Nonstoichiometry and Dielectric Evolution of $BaTiO_3$. Part II Insulation Resistance Degradation under Applied dc Bias" J. Applied Physics, 96 7500-508 (2004).   DOI   ScienceOn
15 G. Y. Yang, G. D. Lian, E. C. Dickey, C. A. Randall, D.E. Barber, P. Pinceloup, M. A. Henderson, R. A. Hill, J. J. Beeson, and D. J. Skamser, "Oxygen Nonstoichiometry and Dielectric Evolution of BaTiO3. Part I Improvement of Insulation Resistance with Reoxidation," J. Applied Physics, 96 7492-99 (2004).   DOI   ScienceOn
16 R. R. Duan, R. F. Speyer, E. Alberta, and T. R. Shrout, "High Curie Temperature Perovskite $BiInO_3-PbTiO_3$ Ceramics," J. Mat. Res., 19 [7] 2185-93 (2004).   DOI   ScienceOn