• Title/Summary/Keyword: Complex algorithm

Search Result 2,608, Processing Time 0.025 seconds

Machine learning-based design automation of CMOS analog circuits using SCA-mGWO algorithm

  • Vijaya Babu, E;Syamala, Y
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.837-848
    • /
    • 2022
  • Analog circuit design is comparatively more complex than its digital counterpart due to its nonlinearity and low level of abstraction. This study proposes a novel low-level hybrid of the sine-cosine algorithm (SCA) and modified grey-wolf optimization (mGWO) algorithm for machine learning-based design automation of CMOS analog circuits using an all-CMOS voltage reference circuit in 40-nm standard process. The optimization algorithm's efficiency is further tested using classical functions, showing that it outperforms other competing algorithms. The objective of the optimization is to minimize the variation and power usage, while satisfying all the design limitations. Through the interchange of scripts for information exchange between two environments, the SCA-mGWO algorithm is implemented and simultaneously simulated. The results show the robustness of analog circuit design generated using the SCA-mGWO algorithm, over various corners, resulting in a percentage variation of 0.85%. Monte Carlo analysis is also performed on the presented analog circuit for output voltage and percentage variation resulting in significantly low mean and standard deviation.

A Study on the Out-of-Step Detection Algorithm using Time Variation of Complex Power-Part I : The Variation of Complex Power Trajectory in Complex Plane (복소전력의 변화율을 이용한 동기탈조 검출 알고리즘에 관한 연구-Part I: 복소평면에서의 복소전력의 궤적변화)

  • Kwon O-Sang;Kim Chul-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.7
    • /
    • pp.345-351
    • /
    • 2005
  • An out-of-step condition results from the loss of the synchronism of the generators. A disturbance in a power system causes the generator angle to oscillate. When there is a severe disturbance such as a heavy current fault loss of major generation or loss of a large block of load, the oscillation can be severe and even increase largely and finally the out-of-step condition may un. During the power swing and out-of-step conditions, the apparent impedance at a relay location changes, and the power flow also changes as the angle difference is varied. This paper presents a method to analyze the trajectory of complex power during a power swing and out-of-step condition. The trajectory of the complex power is analyzed when a power swings and a fault occurs. Moreover, the complex power is analyzed when the ratios between the voltages at both sides and the line impedances are changed. These methods are verified through simulation using the ATP/EMTP MODELS.

RSNT-cFastICA for Complex-Valued Noncircular Signals in Wireless Sensor Networks

  • Deng, Changliang;Wei, Yimin;Shen, Yuehong;Zhao, Wei;Li, Hongjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4814-4834
    • /
    • 2018
  • This paper presents an architecture for wireless sensor networks (WSNs) with blind source separation (BSS) applied to retrieve the received mixing signals of the sink nodes first. The little-to-no need of prior knowledge about the source signals of the sink nodes in the BSS method is obviously advantageous for WSNs. The optimization problem of the BSS of multiple independent source signals with complex and noncircular distributions from observed sensor nodes is considered and addressed. This paper applies Castella's reference-based scheme to Novey's negentropy-based algorithms, and then proposes a novel fast fixed-point (FastICA) algorithm, defined as the reference-signal negentropy complex FastICA (RSNT-cFastICA) for complex-valued noncircular-distribution source signals. The proposed method for the sink nodes is substantially more efficient than Novey's quasi-Newton algorithm in terms of computational speed under large numbers of samples, can effectively improve the power consumption effeciency of the sink nodes, and is significantly beneficial for WSNs and wireless communication networks (WCNs). The effectiveness and performance of the proposed method are validated and compared with three related BSS algorithms through theoretical analysis and simulations.

An Image Restoration using Nonlinear Filter in Mixed Noise Environment (복합잡음 환경에서 비선형 필터를 사용한 영상복원)

  • Long, Xu;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2447-2453
    • /
    • 2013
  • The digital images are being degraded by noise in the process of acquisition, storage and transmission, Gaussian or impulse noise is the representative noise. Meanwhile, the image has lots of tendency to be degraded by complex noise, so various researches are being conducted for reducing these complex noise. In this paper, to remove complex noise, the algorithm processed by modified switching median filter and modified adaptive weighted filter according to the result after judging the kinds of noise is proposed. In the simulation result, excellent denoising capabilities. Furthermore, we compared proposed algorithm with existing methods for objective judgement, and PSNR(peak signal to noise ratio) is used by the criterion of judgement.

Neighborhood coreness algorithm for identifying a set of influential spreaders in complex networks

  • YANG, Xiong;HUANG, De-Cai;ZHANG, Zi-Ke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.2979-2995
    • /
    • 2017
  • In recent years, there has been an increasing number of studies focused on identifying a set of spreaders to maximize the influence of spreading in complex networks. Although the k-core decomposition can effectively identify the single most influential spreader, selecting a group of nodes that has the largest k-core value as the seeds cannot increase the performance of the influence maximization because the propagation sphere of this group of nodes is overlapped. To overcome this limitation, we propose a neighborhood coreness cover and discount heuristic algorithm named "NCCDH" to identify a set of influential and decentralized seeds. Using this method, a node in the high-order shell with the largest neighborhood coreness and an uncovered status will be selected as the seed in each turn. In addition, the neighbors within the same shell layer of this seed will be covered, and the neighborhood coreness of the neighbors outside the shell layer will be discounted in the subsequent round. The experimental results show that with increases in the spreading probability, the NCCDH outperforms other algorithms in terms of the affected scale and spreading speed under the Susceptible-Infected-Recovered (SIR) and Susceptible-Infected (SI) models. Furthermore, this approach has a superior running time.

Evaluation of Reliability and Interruption Cost of Distribution Power System in Industrial Complex (산업단지내 배전계통의 공급신뢰도 및 정전비용 평가)

  • Choi, Sang-Bong;Nam, Ki-Young;Kim, Dae-Kyeong;Jeong, Seong-Hwan;Rhoo, Hee-Seok;Lee, Jae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.95-96
    • /
    • 2006
  • As the power industry moves towards open competition, there has been a call for methodology to evaluate distribution power system reliability by using customer interruption costs. Accordingly, it is increased for methodology to evaluate distribution power system reliability in power supply zones under competitive electricity market. This paper presents algorithm to evaluate system average interruption duration index. expected energy not supplied and system outage cost taking Into consideration failure rate of distribution facility and industrial customer interruption cost. Also, to apply this algorithm to evaluate system outage cost presented in this paper, distribution system of a dual supply system consisting of mostly high voltage customers in industrial complex in Korea is used as a sample case study. Finally, evaluation results of system interruption cost, system average interruption duration index and expected energy not supplied in sample industrial complex area are shown in detail.

  • PDF

A Triangularization Algorithm Solving for the Complex Design with Precedence Constraints and IDEF3 Modeling in Concurrent Engineering (전제조건과 IDEF3를 응용한 동시공학환경에서의 복합설계)

  • Cho, Moon-Soo;Lim, Tae-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.742-752
    • /
    • 2009
  • Engineering design involves the specification of many variables that define a product, how it is made, and how it behaves applied to computer, communication and control fields. Before some variables can be determined, other variables must first be known or assumed. This fact implies a precedence order of the variables, and of the tasks of determining these variables consequently. Moreover, design of complex systems may involve a large number of design activities. In this paper, the activity-activity incidence matrix is considered as a representation of design activity analysis which mainly focuses on the precedence constraint with an object of doing IDEF3 in process-centered view. In order to analyze the activity-activity incidence matrix, a heuristic algorithm is proposed, which transforms an activity-activity, parameter-formula, and parameter-parameter incidence matrix into a lower triangular form. The analysis of the structured matrices can not only significantly reduce the overall project complexity by reorganizing few critical tasks in practice, but also aims at obtaining shorter times considering the solution structure by exploring concurrency.

Experimental Evaluation of Proton Dose Calculations in Phantoms Simulating a Clinical Heterogeneity in Patients

  • Kohno, Ryosuke;Takada, Yoshihisa;Sakae, Takeji;Terunuma, Toshiyuki;Matsumoto, Keiji;Nohtomi, Akihiro;Matsuda, Hiroyuki
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.208-210
    • /
    • 2002
  • In a treatment planning for actual patients with a complex internal structure, we often expect that proton beams, which pass through both a bolus and the heterogeneity in body, will form complex dose distributions. Therefore, the accuracy of the calculated dose distributions has to be verified for such a complex object. Then dose distributions formed by proton beams passing through both the bolus and phantoms simulating a clinical heterogeneity in patients were measured using a silicon semiconductor detector. The calculated results by the range-modulated pencil beam algorithm (RMPBA) produced large errors compared with the measured dose distributions since dose calculation using the RMPBA could not predict accurately the edge-scattering effect both in the bolus and in clinical heterogeneous phantoms. On the other hand, in spite of this troublesome heterogeneity, calculated results by the simplified Monte Carlo (SMC) method reproduced the experimental ones well. It is obvious that the dose-calculations by the SMC method will be more useful for application to the treatment planning for proton therapy.

  • PDF

Optimal Preventive Maintenance Period in Complex Systems in Considering Components Reliability Characteristic (하부 구성품의 신뢰도 특성을 고려한 복합 시스템의 최적 예방정비 주기 산출)

  • Lee, Youn-Ho;Lee, Ik-Do;Lee, Dong-Woo;Sohn, Ki-Hong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.4
    • /
    • pp.390-399
    • /
    • 2011
  • Generally the life-cycle cost of complex systems composed of several sub systems or equipments such as train, aircraft weapon systems is spent much more during operation and maintenance phase than development phase. The maintenance cost for maintaining the availability and extending the life span of systems comprise a large proportion of systems operation cost. The cycle of preventive maintenance affects operation and maintenance cost a lot. In this study we introduce a way minimizing life-cycle cost of systems by calculating more reliable preventive maintenance period than the results of previous study using systems reliability data considered the reliability and failure effect ratio of sub-systems or components. We can solve the preventive maintenance period problem known as NP-Hard as quick as possible by using modified genetic algorithm than using other models introduced in previous study.

3D traveltime calculation considering seismic velocity anisotropy (탄성파 속도 이방성을 고려한 3차원 주시 모델링)

  • Jeong, Chang-Ho;Suh, Jung-Hee
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.203-208
    • /
    • 2007
  • Due to the long tectonic history and the very complex geologic formations in Korea, the anisotropic characteristics of subsurface material may often change very greatly and locally. The algorithms for the travel time computation commonly used, however, may not give sufficiently precise results particularly for the complex and strong anisotropic model, since they are based on the two-dimensional (2D) earth and/or weak anisotropy assumptions. This study is intended to develope a three-dimensional (3D) modeling algorithm to precisely calculate the first arrival time in the complex anisotropic media. We assume 3D TTI (tilted transversely isotropy) medium having the arbitrary symmetry axis. The algorithm includes the 2D non-linear interpolation scheme to calculate the traveltimes inside the grid and the 3D traveltime mapping to fill the 3D model with first arrival times. The weak anisotropy assumption, moreover, can be overcome through devising a numerical approach of the steepest descent method in the calculation of minimum traveltime, instead of using approximate solution.

  • PDF