• Title/Summary/Keyword: Complex Signal

Search Result 1,114, Processing Time 0.04 seconds

Computation of Transmissivity and Signal Loss in Inhomogeneous Complex Media (불균일 복합매질의 투과도 및 신호감쇄량 계산)

  • 김채영;정종철
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.30-37
    • /
    • 1999
  • Transmissivity and the signal loss in soil are computed. An electric field expression for the inhomogeneous complex media modelled by two layers is shown as an integral form. Volume scattering occurs in inhomogeneous media, and iterative Born approximation is used to analyze this scattering effect. The degree of randomness is controlled by specifying the variance and correlation length. Expression for the transmissivity and the signal loss is presented as the parameter of soil moisture contents, soil particle radius, temperature and frequency. The analysis shows that big deviation in signal loss depends on the temperature variation remarkably and the physical reason of unusual level is explained.

  • PDF

Target Scattering Echo Simulation for Active Sonar System in the Geometric Optics Region (기하광학영역에서의 능동소나 표적신호합성)

  • 신기철;박재은;김재수;최상문;김우식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.91-97
    • /
    • 2001
  • Since the new field information of target signal is important in the development and verification of active sonar system, experimental method and simulation technique are widely used in order to analyze the detail characteristics of target scattered echoes. Therefore, in this paper, the scale target experiment is performed to develope and Improve the target signal simulation model. Since the experimental results show that the specular reflection is the major component among scattering mechanisms, the target signal simulation model based on the Geometric Optics Theory (GOT) is developed. Complex target is separated into simple shapes, known as canonical shape. The contribution from individual canonical shapes are summed with proper phase and amplitude to produce the target strength of the whole complex body. Simulated target signal is compared with the experimental results and discussed.

  • PDF

Development of Multiple Fault Diagnosis Methods for Intelligence Maintenance System (지적보전시스템의 실시간 다중고장진단 기법 개발)

  • Bae, Yong-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.23-30
    • /
    • 2004
  • Modern production systems are very complex by request of automation, and failure modes that occur in thisautomatic system are very various and complex. The efficient fault diagnosis for these complex systems is essential for productivity loss prevention and cost saving. Traditional fault diagnostic system which perforns sequential fault diagnosis can cause catastrophic failure during diagnosis when fault propagation is very fast. This paper describes the Real-time Intelligent Multiple Fault Diagnosis System (RIMFDS). RIMFDS assesses current machine condition by using sensor signals. This system deals with multiple fault diagnosis, comprising of two main parts. One is a personal computer for remote signal generation and transmission and the other is a host system for multiple fault diagnosis. The signal generator generates various faulty signals and image information and sends them to the host. The host has various modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault diagnosis and graphic representation of the results. RIMFDS diagnoses multiple faults with fast fault propagation and complex physical phenomenon. The new system based on multiprocessing diagnoses by using Hierarchical Artificial Neural Network (HANN).

Computer Application to ECG Signal Processing

  • Okajima, Mitsuharu
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.13-14
    • /
    • 1985
  • We have developed a microprogramir!able signal processor for real-time ultrasonic signal processing. Processing speed was increased by the parallelism in horizontal microprogram using 104bits microcode and the Pipelined architecture. Control unit of the signal processor was designed by microprogrammed architec- ture and writable control store (WCS) which was interfaced with host computer, APPLE- ll . This enables the processor to develop and simulate various digital signal processing algorithms. The performance of the processor was evaluated by the Fast Fourier Transform (FFT) program. The execution time to perform 16 bit 1024 points complex FF7, radix-2 DIT algorithm, was about 175 msec with IMHz master Clock. We can use this processor to Bevelop more efficient signal processing algorithms on the biological signal processing.

  • PDF

An Improvement of Signal Processing of Pulse Oximeter Using Modulization (모듈화를 이용한 펄스 옥시메터의 신호처리 개선)

  • 이한욱;이주원;이종희;조원래;장두봉;김영일;이건기
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.117-120
    • /
    • 2000
  • Pulse oximetry is a well established non-invasive optical technique for monitoring the SpO$_2$ during anaesthesia, recovery and intensive care. Pulse oximeters determine the oxygen saturation level of blood by measuring the light absorption of arterial blood. The sensors consists of red and infrared light sources and photodetectors. In the measurement of the hemoglobin oxygen saturation, conventional method has required the technique of filtering of remove the noise, and of complex signal processing algorithm. So much time have required to signal processing. In this research, we separate AC signal and DC signal in the stage of signal detection. We filter the noise from each signal and convert A/D. We obtain the SpO$_2$ using the DSP algorithm.

  • PDF

Design of Postdistortion Linearizer using Complex Envelope Transfer Characteristics of Power Amplifier (전력 증폭기의 복소 포락선 전달특성을 이용한 Postdistortion 방식의 선형화기의 설계)

  • 한재희;이덕희;남상욱;남상욱;임종식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.7
    • /
    • pp.1086-1093
    • /
    • 2001
  • A new linearization technique for RF high-power amplifiers(HPAs) using n-th order error signal generator (ESGn) is proposed. The n-th order ESG generates an error signal based on the complex envelope transfer characteristics of the HPA, which is combined at the output of the HPA. Therefore, the higher-order nonlinearlities are not affected by the ESG$\_$n/ and the stability of the linearized system is guaranteed due to the inherent open-loop configuration. Moreover, the output delay loss can be avoided, because the error signal is generated with the input signal of the HPA. The IMD(intermodulation distortion) improvement obtained applying the ESG$\_$7/ to 5 W class A HPA in cellular band demonstrates the feasibility of the proposed postdistortion system.

  • PDF

Study on the maintenance period allocation method for railway signal equipment (철도신호설비 유지보수주기 할당에 관한 연구)

  • Lee, Kang-Mi;Shin, Duck-O;Lee, Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.647-652
    • /
    • 2008
  • Railway signal system has been more complex, larger and required high reliability. So, maintenance by experience must be changed to optimize maintenance program or introduced systematic method for estabilish new maintenance program. In this paper, we introduced the maintenance period decision method which are Age based method and Block replacement method based on the failure distribution for the equipment. So, we allocated optimum maintenacne period for the railway signal equipment using block replacement method.

  • PDF

A Study on the Complex-Channel Blind Equalization Using ITL Algorithms

  • Kim, Nam-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8A
    • /
    • pp.760-767
    • /
    • 2010
  • For complex channel blind equalization, this study presents the performance and characteristics of two complex blind information theoretic learning algorithms (ITL) which are based on minimization of Euclidian distance (ED) between probability density functions compared to constant modulus algorithm which is based on mean squared error (MSE) criterion. The complex-valued ED algorithm employing constant modulus error and the complex-valued ED algorithm using a self-generated symbol set are analyzed to have the fact that the cost function of the latter forces the output signal to have correct symbol values and compensate amplitude and phase distortion simultaneously without any phase compensation process. Simulation results through MSE convergence and constellation comparison for severely distorted complex channels show significantly enhanced performance of symbol-point concentration with no phase rotation.

EEG Characteristic Analysis of Sleep Spindle and K-Complex in Obstructive Sleep Apnea

  • Kim, Min Soo;Jeong, Jong Hyeog;Cho, Yong Won;Cho, Young Chang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.1
    • /
    • pp.41-51
    • /
    • 2017
  • This Paper Describes a Method for the Evaluation of Sleep Apnea, Namely, the Peak Signal-to-noise ratio (PSNR) of Wavelet Transformed Electroencephalography (EEG) Data. The Purpose of this Study was to Investigate EEG Properties with Regard to Differences between Sleep Spindles and K-complexes and to Characterize Obstructive Sleep Apnea According to Sleep Stage. We Examined Non-REM and REM Sleep in 20 Patients with OSA and Established a New Approach for Detecting Sleep Apnea Base on EEG Frequency Changes According to Sleep Stage During Sleep Apnea Events. For Frequency Bands Corresponding to A3 Decomposition with a Sampling Applied to the KC and the Sleep Spindle Signal. In this Paper, the KC and Sleep Spindle are Ccalculated using MSE and PSNR for 4 Types of Mother Wavelets. Wavelet Transform Coefficients Were Obtained Around Sleep Spindles in Order to Identify the Frequency Information that Changed During Obstructive Sleep Apnea. We also Investigated Whether Quantification Analysis of EEG During Sleep Apnea is Valuable for Analyzing Sleep Spindles and The K-complexes in Patients. First, Decomposition of the EEG Signal from Feature Data was Carried out using 4 Different Types of Wavelets, Namely, Daubechies 3, Symlet 4, Biorthogonal 2.8, and Coiflet 3. We Compared the PSNR Accuracy for Each Wavelet Function and Found that Mother Wavelets Daubechies 3 and Biorthogonal 2.8 Surpassed the other Wavelet Functions in Performance. We have Attempted to Improve the Computing Efficiency as it Selects the most Suitable Wavelet Function that can be used for Sleep Spindle, K-complex Signal Processing Efficiently and Accurate Decision with Lesser Computational Time.

Blind Channel Estimation based on Hadamard Matrix Interstream Transmission for Multi-Cell MIMO Networks (다중 셀 MIMO 네트워크를 위한 Hadamard 행렬 Interstream 전송 기반 Blind 채널 추정)

  • Yang, Jae-Seung;Hanif, Mohammad Abu;Park, Ju-Yong;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.119-125
    • /
    • 2015
  • In this paper, we introduce a Hadamard matrix interstream transmission based blind channel estimation for multi-cells multiple-input and multiple-output (MIMO) networks. The proposed scheme is based on a network with mobile stations (MS) which are deployed with multi cells. We assume that the MS have the signals from both cells. The signal from near cell are considered as desired signal and the signals from the other cells are interference signal. Since the channel is blind, so that we transmit Hadamard matrix pattern pilot stream to estimate the channel; that gives easier and fast channel estimation for large scale MIMO channel. The computation of Hadamard based system takes only complex additions, and thus the complexity of which is much lower than the scheme with Fourier transform since complex multiplications are not needed. The numerical analysis will give perfection of proposed channel estimation.