• Title/Summary/Keyword: Complex Normal Modes

Search Result 27, Processing Time 0.023 seconds

Rotordynamic Analysis Using a Direction Frequency Response Function (방향성 주파수 응답 함수를 이용한 회전체 동역학 해석)

  • Donghyun, Lee;Byungchan, Jeon ;Byungock, Kim;Hyungsoo, Lim
    • Journal of Domestic Journal Test
    • /
    • v.11 no.2
    • /
    • pp.221-227
    • /
    • 2023
  • − A rotordynamic system consists of components that undergo rotational motion. These components include shafts, impellers, thrust collars, and components that support rotation, such as bearings and seals. The motion of this type of rotating system can be modeled as two-dimensional motion and, accordingly, the equa- tion of motion for the rotordynamic system can be represented using complex coordinates. The directional fre- quency response function (dFRF) can be derived from this complex coordinate system and used as an effective analytical tool for rotating machinery. However, the dFRF is not widely used in the field because most pre- vious studies and commercial software are based on real coordinate systems. The objective of the current study is to introduce the dFRF and show that it can be an effective tool in rotordynamic analysis. In this study, the normal frequency response function (nFRF) and dFRF are compared under rotordynamic analysis for isotropic and unisotropic rotors. Results show that in the nFRF, the magnitude of the response is the same for both pos- itive and negative frequencies, and the response is similar under all modes. Consequently, the severity of the mode cannot be identified. However, in the dFRF, the forward and backward modes are clearly distinguishable in the frequency domain of the isotropic rotor, and the severity of the mode can be identified for the uniso- tropic rotor.

Behavior of Segmented Composites Using General Mortar under Static and Impact Loading (일반 모르타르를 이용한 분절 복합체의 정하중 및 충격하중 실험)

  • Kim, Youl-Hee;Min, Kyung-Hwan;Lee, Jae-Seong;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.33-36
    • /
    • 2008
  • It is generally known that a shell in the form of layered structures stacked up thin elements by organic adhesives has high resistance capacity against static and impact loading. The complex materials such as these diversified layered structures are more reliable and efficient to the impact loading than the single material. In this study, the segmented composites in the shape of a beam were made, using mortar and concrete block and tested under static and impact loading in order to develop the complex materials in the form of layered structures as the segmented composites to resist impact loading. And it compared to the normal concrete beams having the same compressive strength to evaluate the differences in their performance and failure modes.

  • PDF

구조물의 진동해석에 의한 시스템 규명에 관한 연구

  • 현천성;이기형;정인성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.279-284
    • /
    • 1992
  • This paper presents the theoretical development and qualitiative evaluation of a new concept in the mathematical modeling of dynamicstructures. We use both test data and analytical approximations to identify the parameters of an incomplete model. The model has the capability of prodicting the response of the points of interest on the structure over the frequency range of interest and can be used to predict the changes in natural frequencies and normal modes due to structural changes. The theory was tested by running simulated tests on a relatively simple structure, identifying the parameters of the incomplete model, and using this model to predict the effects on frequency and mode shapes of several mass and stiffness changes. The conditions of the test were varied by selecting different numbers of points of meansurement, varying the frequency range, and by including assumed measurement error. It is recommended that the theroetical development be continued and that applications to more complex structures be carried out in order todevelop a better understanding of the limitations and capabilites of the method. A successful, more definitive evaluation could lead to immediate practical applications.

Analysis of the Propagation Characteristics of Ultrasonic Guided Waves Excited by Single Frequency and Broadband Sources

  • Kang, To;Song, Sung-Jin;Kim, Hak-Joon;Cho, Young-Do;Lee, Dong-Hoon;Cho, Hyun-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.570-578
    • /
    • 2009
  • Excitation and propagation of guided waves are very complex problems in pipes due to their dispersive nature. Pipes are commonly used in the oil, chemical or nuclear industry and hence must be inspected regularly to ensure continued safe operation. The normal mode expansion(NME) method is given for the amplitude with which any propagating waveguide mode is generated in the pipes by applied surface tractions. Numerical results are calculated based on the NME method using different sources, i.e., non-axisymmetric partial loading and quasi-axisymmetric loading sources. The sum of amplitude coefficients for 0~nineth order of the harmonic modes are calculated based on the NME method and the dispersion curves in pipes. The superimposed total field which is namely the angular profile, varies with propagating distance and circumferential angle. This angular profile of guided waves provides information for setting the transducer position to find defects in pipes.

Design on the efficient BILBO for BIST allocation of ASIC (ASIC의 BIST 할당을 위한 효과적인 BILBO 설계)

  • 이강현
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.9
    • /
    • pp.53-60
    • /
    • 1997
  • In this paper, an efficient BILBO(named EBILBO) is proposed for batch testing application when a BIST (built-in self test) circuit is implemented on ASIC. In a large and complex circuit, the proposed algorithm of batch testing has one pin-count that can easily control 4 test modes in the normal speed of circuit operation. For the implementation of the BIST cifcuit, the test patern needed is generated by PRTPG(pseudo-random test pattern generator) and the ouput is observed by proposed algorithm is easily modified, such as the modelling of test pattern genration, signature EBILBO area and performance of the implemented BIST are evaluated using ISCAS89 benchmark circuits. As a resutl, in a circuit above 600 gates, it is confirmed that test patterns are genrated flexibly about 500K as EBILBO area is 59%, and the range of fault coverage is from 88.3% to 100%. And the optimized operation frequency of EBILBO designed and the area are 50MHz and 150K respectively. On the BIST circit of the proposed batch testing, the test mode of EBILBO is able to execute as realtime that has te number of s$\^$+/n$\^$+/(2s/2p-1) clocks simultaneously with the normal mode of circuit operation. Also the proposed algorithm is made of the library with VHDL coding thus, it will be widely applied to DFT (design for testability) that satisfies the design and test field.

  • PDF

Damping of a taut cable with two attached high damping rubber dampers

  • Cu, Viet Hung;Han, Bing;Wang, Fang
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1261-1278
    • /
    • 2015
  • Due to their low intrinsic damping, stay cables in cable-stayed bridges have often exhibited unanticipated and excessive vibrations which result in increasing maintenance frequency and disruption to normal operations of the entire bridges. Mitigation of undesired cable vibration can be achieved by attaching an external damping device near the anchorage. High Damping Rubber (HDR) dampers have many advantages such as compact size, better aesthetics, easy maintenance, temperature stability, and cost benefits; therefore, they have been widely used to increase cable damping. Although a single damper has been shown to reduce cable vibrations, it is not the most effective method due to geometric constraints. This paper proposes the use of two HDR dampers to improve effectiveness and robustness in suppressing cable vibration. Oscillation parameters of the cable-dampers system were investigated in detail by modeling the stay cable as a taut string and each HDR damper as complex-valued impedance and by using an analytical formulation of the complex eigenvalue problem. The problem of two HDR dampers arbitrarily located along a cable is solved and the solution is discussed. Asymptotic formulas to calculate the damping ratios of the cable with two HDR dampers installed near the anchorage(s) are proposed and compared with the exact solutions. Further, a design example is presented in order to justify the methodology. The results of this study show that when the two HDR dampers are installed close to each other on the same end of the cable, some interaction between the dampers leads to reduced damping ratio. When the dampers are on the opposite ends of the cable, they are effective in increasing damping ratio and can provide better vibration reduction to multiple modes.

Experimental study on the shear failure model for concrete under compression-shear loading

  • Shu, Xiaojuan;Luo, Yili;Zhao, Chao;Dai, Zhicheng;Zhong, Xingu;Zhang, Tianyu
    • Computers and Concrete
    • /
    • v.29 no.2
    • /
    • pp.81-92
    • /
    • 2022
  • The influence of normal stress perpendicular to the potential shear plane was always neglected in existing researches, which may lead to a serious deviation of the shear strength of concrete members in practice designs and numerical analyses. In this study, a series of experimental studies are carried out in this paper, which serves to investigate the shear behavior of concrete under compression shear loading. Based on the test results, a three-phase shear failure model for cohesive elements are developed, which is able to take into consideration the influence of normal stress on the shear strength of concrete. To identify the accuracy and applicability of the proposed model, numerical models of a double-noted concrete plate are developed and compared with experimental results. Results show that the proposed constitutive model is able to take into consideration the influence of normal stress on the shear strength of concrete materials, and is effective and accurate for describing the complex fracture of concrete, especially the failure modes under compression shear loadings.

mPW1PW91 Calculated Structures and IR Spectra of Thiacalix[4]biscrown-5 Complexed with Alkali Metal Ions

  • Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1685-1691
    • /
    • 2011
  • The molecular structures of thiacalix[4]biscrown-5 (1) and p-tert-butylthiacalix[4]biscrown-5 (2) and their alkali-metal-ion complexes were optimized using the DFT BLYP/6-31G(d) and mPW1PW91/6-31G(d,p) (hybrid HF-DF) calculations. The total electronic energies, the normal vibrational modes, and the Gibbs free energies of the mono- and di-topic complexes of each host with the sodium and potassium ions were analyzed. The $K^+$-complexes exhibited relatively stronger binding efficiencies than $Na^+$-complexes for both the monoand di-topic complexes of 1 and 2 comparing the efficiencies of the sodium and potassium complexes with an anisole and phenol. The mPW1PW91/6-31G(d,p) calculated distances between the oxygen atoms and the alkali metal ions were reported in the alkali-metal-ion complexes ($1{\cdot}Na^+$, $1{\cdot}2Na^+$, $1{\cdot}K^+$, $1{\cdot}2K^+$, $2{\cdot}Na^+$, $2{\cdot}Na^+$, $2{\cdot}K^+$, $2{\cdot}2K^+$). The BLYP/6-31G(d) calculated IR spectra of the host 1 and its mono-topic alkali-metal-ion complexes are compared.

A Study of Vibration Analysis Due to Structual Changes of Dynamic Structure (동적 구조물의 구조변화에 의한 진동해석 연구)

  • 현천성;이기형;정인성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2033-2048
    • /
    • 1992
  • This paper presents the theoretical development and qualitative evaluation of a new concept in the mathematical modeling of dynamic structures. We use both test data and analytical approximations to identify the parameters of an incomplete model. The model has the capability of predicting the response of the points of interest on the structure over the frequency range of interest and can be used to predict the changes in natural frequencies and normal modes due to structural changes. The theory was tested by running simulated tests on a relatively simple structure, identifying the parameters of the incomplete model, and using this model to predict the effects on frequency and mode shapes of several mass and stiffness changes. The conditions of the tests were varied by selecting different numbers of points of measurement, varying the frequency range, and by including assumed measurement error. It is recommended that the theoretical development be continued and that applications to more complex structures be carried out in order to develop a better understanding of the limitations and capabilities of the method. A successful, more definitive sevaluation could lead to immediate practical applications.

Development of an Intelligent Charger with a Battery Diagnosis Function Using Online Impedance Spectroscopy

  • Nguyen, Thanh-Tuan;Doan, Van-Tuan;Lee, Geun-Hong;Kim, Hyung-Won;Choi, Woojin;Kim, Dae-Wook
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1981-1989
    • /
    • 2016
  • Battery diagnosis is vital to battery-based applications because it ensures system reliability by avoiding battery failure. This paper presents a novel intelligent battery charger with an online diagnosis function to circumvent interruptions in system operation. The charger operates in normal charging and diagnosing modes. The diagnosis function is performed with the impedance spectroscopy technique, which is achieved by injecting a sinusoidal voltage excitation signal to the battery terminals without the need for additional hardware. The impedance spectrum of the battery is calculated based on voltage excitation and current response with the aid of an embedded digital lock in amplifier in a digital signal processor. The measured impedance data are utilized in the application of the complex nonlinear least squares method to extract the battery parameters of the equivalent circuit. These parameters are then compared with the reference values to reach a diagnosis. A prototype of the proposed charger is applied to four valve-regulated lead-acid batteries to measure AC impedance. The results are discussed.