• Title/Summary/Keyword: Complex Images

Search Result 1,016, Processing Time 0.029 seconds

Underwater Visualization for Fish Behaviour Model in the Towed Fisheries using Chaos Theory (혼돈이론을 응용한 예망어구에 대한 어류반응 행동모델의 수중현상 시각화)

  • 박명철;김용해;하석운
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.645-653
    • /
    • 2004
  • The prediction and its visualization on fish behaviour in relation to fishing gear are carried out based on field detection and observation during fishing operation. However, field observation is very difficult due to variable underwater environments and accordingly due to complex, chaotic response of fish behaviour in the physiological and ecological points. Therefore simple graphic display in previous results was not enough to represent real underwater images of the fishing gear and fish behaviour. In this study more actual visualization technique was developed using by previous fish behaviour model with chaos theory in order to predict, evaluate or analyse complex and non-linear phenomena of response patterns in complex fish behaviour. In addition, display of the fish finder was also designed to simulate the underwater fish detection and distribution in fishing ground. This suggested visualization tool was very similar to the information of the fish movement in the field observation in visual underwater reality and useful to check up between simulations and observations.

Pectoralis Muscle Flap Repair Reduces Paradoxical Motion of the Chest Wall in Complex Sternal Wound Dehiscence

  • Zeitani, Jacob;Russo, Marco;Pompeo, Eugenio;Sergiacomi, Gian Luigi;Chiariello, Luigi
    • Journal of Chest Surgery
    • /
    • v.49 no.5
    • /
    • pp.366-373
    • /
    • 2016
  • Background: The aim of the study was to test the hypothesis that in patients with chronic complex sternum dehiscence, the use of muscle flap repair minimizes the occurrence of paradoxical motion of the chest wall (CWPM) when compared to sternal rewiring, eventually leading to better respiratory function and clinical outcomes during follow-up. Methods: In a propensity score matching analysis, out of 94 patients who underwent sternal reconstruction, 20 patients were selected: 10 patients underwent sternal reconstruction with bilateral pectoralis muscle flaps (group 1) and 10 underwent sternal rewiring (group 2). Eligibility criteria included the presence of hemisternum diastases associated with multiple (${\geq}$3) bone fractures and radiologic evidence of synchronous chest wall motion (CWSM). We compared radiologically assessed (volumetric computed tomography) ventilatory mechanic indices such as single lung and global vital capacity (VC), diaphragm excursion, synchronous and paradoxical chest wall motion. Results: Follow-up was 100% complete (mean $85{\pm}24months$). CWPM was inversely correlated with single lung VC (Spearman R=-0.72, p=0.0003), global VC (R=-0.51, p=0.02) and diaphragm excursion (R=-0.80, p=0.0003), whereas it proved directly correlated with dyspnea grade (Spearman R=0.51, p=0.02) and pain (R=0.59, p=0.005). Mean CWPM and single lung VC were both better in group 1, whereas there was no difference in CWSM, diaphragm excursion and global VC. Conclusion: Our study suggests that in patients with complex chronic sternal dehiscence, pectoralis muscle flap reconstruction guarantees lower CWPM and greater single-lung VC when compared with sternal rewiring and it is associated with better clinical outcomes with less pain and dyspnea.

A taxonomic revision of the Boehmeria spicata complex (Urticaceae) in Korea

  • JO, Hyeong Jun;KIM, Jae Young;LEE, Yuri;PARK, Se Hee;KWON, Min Ji;JEONG, Seon;CHUNG, Gyu Young
    • Korean Journal of Plant Taxonomy
    • /
    • v.51 no.2
    • /
    • pp.115-132
    • /
    • 2021
  • Seven species and two varieties belonging to the genus Boehmeria Jacq. (Urticaceae) are known to be distributed in Korea. Among them, B. spicata, B. tricuspis, and B. tricuspis var. unicuspis were subjected to an external morphological study. Among the individuals believed to exhibit variations in the leaf shape, B. gracilis and B. silvestrii were newly recognized. Unlike related taxa, B. gracilis has middle leaves with an elliptic, broadly elliptic, ovate, or broadly depressed ovate shape, a regular and serrulate-dentate margin, and an unlobed and short caudate or cuspidate apex. Boehmeria silvestrii has middle leaves with 5-angled ovate, orbicular ovate or broadly ovate shapes, and 3- or 5-lobed and caudate apices. Therefore, we assigned the corresponding names 'Top-geo-buk-kko-ri' and 'Cham-geo-buk-kko-ri'. Meanwhile, the B. spicata complex (B. gracilis, B. silvestrii, B. spicata, and B. tricuspis var. unicuspis) is very closely related in terms of the morphological characters, whereas B. tricuspis exhibits no relationship. Furthermore, because the scientific name and type specimen of B. tricuspis var. unicuspis (Pul-geo-buk-kko-ri) are problematic, the correct name B. paraspicata Nakai and corresponding holotype are presented. Additionally, lectotypes of B. gracilis and B. silvestrii are newly designated here. A taxonomic treatment, descriptions, a key, photographs, type specimens, and leaf variation images of the B. spicata complex are provided in this study.

SPIHT-based Subband Division Compression Method for High-resolution Image Compression (고해상도 영상 압축을 위한 SPIHT 기반의 부대역 분할 압축 방법)

  • Kim, Woosuk;Park, Byung-Seo;Oh, Kwan-Jung;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.198-206
    • /
    • 2022
  • This paper proposes a method to solve problems that may occur when SPIHT(set partition in hierarchical trees) is used in a dedicated codec for compressing complex holograms with ultra-high resolution. The development of codecs for complex holograms can be largely divided into a method of creating dedicated compression methods and a method of using anchor codecs such as HEVC and JPEG2000 and adding post-processing techniques. In the case of creating a dedicated compression method, a separate conversion tool is required to analyze the spatial characteristics of complex holograms. Zero-tree-based algorithms in subband units such as EZW and SPIHT have a problem that when coding for high-resolution images, intact subband information is not properly transmitted during bitstream control. This paper proposes a method of dividing wavelet subbands to solve such a problem. By compressing each divided subbands, information throughout the subbands is kept uniform. The proposed method showed better restoration results than PSNR compared to the existing method.

Ka-band CMOS 2-Channel Image-Reject Receiver (Ka-대역 CMOS 2채널 이미지 제거 수신기)

  • Dongju Lee;Se-Hwan An;Ji-Han Joo;Jun-Beom Kwon;Younghoon Kim;Sanghun Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.5
    • /
    • pp.109-114
    • /
    • 2023
  • In this paper, a 2-channel Image-Reject receiver using a 65-nm CMOS process is presented for Ka-band compact radars. The designed receiver consists of Low-Noise Amplifier (LNA), IQ mixer, and Analog Baseband (ABB). ABB includes a complex filter in order to suppress unwanted images, and the variable gain amplifiers (VGAs) in RF block and ABB have gain tuning range from 4.5-56 dB for wide dynamic range. The gain of the receiver is controlled by on-chip SPI controllers. The receiver has noise figure of <15 dB, OP1dB of >4 dBm, image rejection ratio of >30 dB, and channel isolation of >45 dB at the voltage gain of 36 dB, in the Ka-band target frequency. The receiver consumes 420 mA at 1.2 V supply with die area of 4000×1600 ㎛.

A Quick-and-dirty Method for Detection of Ground Moving Targets in Single-Channel SAR Single-Look Complex (SLC) Images by Differentiation (미분을 이용한 단일채널 SAR SLC 영상 내 지상 이동물체의 탐지방법)

  • Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.185-205
    • /
    • 2014
  • SAR ground moving target indicator (GMTI) has long been an important issue for SAR advanced applications. As spatial resolution of space-borne SAR system has been significantly improved recently, the GMTI becomes a very useful tool. Various GMTI techniques have been developed particularly using multi-channel SAR systems. It is, however, still problematic to detect ground moving targets within single channel SAR images while it is not practical to access high resolution multi-channel space-borne SAR systems. Once a ground moving target is detected, it is possible to retrieve twodimensional velocities of the target from single channel space-borne SAR with an accuracy of about 5 % if moving faster than 3 m/s. This paper presents a quick-and-dirty method for detecting ground moving targets from single channel SAR single-look complex (SLC) images by differentiation. Since the signal powers of derivatives present Doppler centroid and rate, it is very efficient and effective for detection of non-stationary targets. The derivatives correlate well with velocities retrieved by a precise method with a correlation coefficient $R^2$ of 0.62, which is well enough to detect the ground moving targets. While the approach is theoretically straightforward, it is necessary to remove the effects of residual Doppler rate before finalizing the ground moving target candidates. The confidence level of results largely depends on the efficiency and effectiveness of the residual Doppler rate removal method. Application results using TerraSAR-X and truck-mounted corner reflectors validated the efficiency of the method. While the derivatives of moving targets remain easily detectable, the signal energy of stationary corner reflectors was suppressed by about 18.5 dB. It results in an easy detection of ground targets moving faster than 8.8 km/h. The proposed method is applicable to any high resolution single channel SAR systems including KOMPSAT-5.

Keyhole Imaging Combined Phase Contrast MR Angiography Technique (Keyhole Imaging기법을 적용한 위상대조도 자기공명 혈관조영기법)

  • Lee, D.H.;Hong, C.P.;Han, B.S.;Lee, M.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.72-77
    • /
    • 2012
  • Phase Contrast MR Angiography(PC MRA) is excellent MRA technique for measuring the velocity of vessels in the human body. PC MRA need to at least four images for angiogram reconstruction and it caused longer scan time. Therefore, we used keyhole imaging combined PC MRA to reduce the scan time. However, keyhole imaging can lead the erroneous effects as loss of phase information or frequency discontinuous. In this study, we applied the keyhole imaging combined 2D PC MRA for improving the temporal resolution and also measured the velocity to evaluate the accuracy of phase information. We used 0.32T MRI scanner(Magfinder II, Scimedix, Korea). Using the 2D PC MRA pulse sequence, the vascular images for a human brain targeted on the Superior Sagittal Sinus(SSS) were obtained. We applied tukey window function for keyhole images to minimize the ringing artifact and erroneous factors that are induced frequency discontinuous and phase information loss. We also applied zero-padded algorithm to peripheral missing k-space lines to compare keyhole imaging results and the artifact power(AP) value was measured on the complex difference images to validate the image quality. Consider as based on our results, heavy image distortions and artifacts were shown until using at least 50% keyhole factor. Using above the 50% keyhole factors are shown well reconstructed and matched for magnitude images and velocity information measurements. In conclusion, we confirmed the image quality and velocity information of keyhole technique combined 2D PC MRA. Especially, measured velocity information through the keyhole imaging combination was similar to the velocity information of full sampled k-space image despite of frequency discontinuous and phase information loss in the keyhole imaging reconstruction process. Consequently, the keyhole imaging combined 2D PC MRA will give some clinical usefulness and advantages as improving the temporal resolution and measuring the velocity information via selecting the appropriate keyhole factor at low tesla MRI system.

Scene Text Extraction in Natural Images using Hierarchical Feature Combination and Verification (계층적 특징 결합 및 검증을 이용한 자연이미지에서의 장면 텍스트 추출)

  • 최영우;김길천;송영자;배경숙;조연희;노명철;이성환;변혜란
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.420-438
    • /
    • 2004
  • Artificially or naturally contained texts in the natural images have significant and detailed information about the scenes. If we develop a method that can extract and recognize those texts in real-time, the method can be applied to many important applications. In this paper, we suggest a new method that extracts the text areas in the natural images using the low-level image features of color continuity. gray-level variation and color valiance and that verifies the extracted candidate regions by using the high-level text feature such as stroke. And the two level features are combined hierarchically. The color continuity is used since most of the characters in the same text lesion have the same color, and the gray-level variation is used since the text strokes are distinctive in their gray-values to the background. Also, the color variance is used since the text strokes are distinctive in their gray-values to the background, and this value is more sensitive than the gray-level variations. The text level stroke features are extracted using a multi-resolution wavelet transforms on the local image areas and the feature vectors are input to a SVM(Support Vector Machine) classifier for the verification. We have tested the proposed method using various kinds of the natural images and have confirmed that the extraction rates are very high even in complex background images.

VR, AR Simulation and 3D Printing for Shoulder and Elbow Practice (VR, AR 시뮬레이션 및 3D Printing을 활용한 어깨와 팔꿈치 수술실습)

  • Lim, Wonbong;Moon, Young Lae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.175-179
    • /
    • 2016
  • Recent advances in technology of medical image have made surgical simulation that is helpful to diagnosis, operation plan, or education. Improving and enhancing the medical imaging have led to the availability of high definition images and three-dimensional (3D) visualization, it allows a better understanding in the surgical and educational field. The Real human field of view is stereoscopic. Therefore, with just 2D images, stereoscopic reconstruction process through the surgeon's head, is necessary. To reduce these process, 3D images have been used. 3D images enhanced 3D visualization, it provides significantly shorter time for surgeon for judgment in complex situations. Based on 3D image data set, virtual medical simulations, such as virtual endoscopy, surgical planning, and real-time interaction, have become possible. This article describes principles and recent applications of newer imaging techniques and special attention is directed towards medical 3D reconstruction techniques. Recent advances in technology of CT, MR and other imaging modalities has resulted in exciting new solutions and possibilities of shoulder imaging. Especially, three-dimensional (3D) images derived from medical devices provides advanced information. This presentation describes the principles and potential applications of 3D imaging techniques, simulation and printing in shoulder and elbow practice.

Manufacture of 3-Dimensional Image and Virtual Dissection Program of the Human Brain (사람 뇌의 3차원 영상과 가상해부 풀그림 만들기)

  • Chung, M.S.;Lee, J.M.;Park, S.K.;Kim, M.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.57-59
    • /
    • 1998
  • For medical students and doctors, knowledge of the three-dimensional (3D) structure of brain is very important in diagnosis and treatment of brain diseases. Two-dimensional (2D) tools (ex: anatomy book) or traditional 3D tools (ex: plastic model) are not sufficient to understand the complex structures of the brain. However, it is not always guaranteed to dissect the brain of cadaver when it is necessary. To overcome this problem, the virtual dissection programs of the brain have been developed. However, most programs include only 2D images that do not permit free dissection and free rotation. Many programs are made of radiographs that are not as realistic as sectioned cadaver because radiographs do not reveal true color and have limited resolution. It is also necessary to make the virtual dissection programs of each race and ethnic group. We attempted to make a virtual dissection program using a 3D image of the brain from a Korean cadaver. The purpose of this study is to present an educational tool for those interested in the anatomy of the brain. The procedures to make this program were as follows. A brain extracted from a 58-years old male Korean cadaver was embedded with gelatin solution, and serially sectioned into 1.4 mm-thickness using a meat slicer. 130 sectioned specimens were inputted to the computer using a scanner ($420\times456$ resolution, true color), and the 2D images were aligned on the alignment program composed using IDL language. Outlines of the brain components (cerebrum, cerebellum, brain stem, lentiform nucleus, caudate nucleus, thalamus, optic nerve, fornix, cerebral artery, and ventricle) were manually drawn from the 2D images on the CorelDRAW program. Multimedia data, including text and voice comments, were inputted to help the user to learn about the brain components. 3D images of the brain were reconstructed through the volume-based rendering of the 2D images. Using the 3D image of the brain as the main feature, virtual dissection program was composed using IDL language. Various dissection functions, such as dissecting 3D image of the brain at free angle to show its plane, presenting multimedia data of brain components, and rotating 3D image of the whole brain or selected brain components at free angle were established. This virtual dissection program is expected to become more advanced, and to be used widely through Internet or CD-title as an educational tool for medical students and doctors.

  • PDF