• 제목/요약/키워드: Complex Geometry Building

검색결과 28건 처리시간 0.027초

철도차량 객실 온습도 USN 모니터링 기술 (Temperature and Humidity Monitoring Using Ubiquitous Senor Network in Railway Cabin)

  • 권순박;조영민;박덕신;박은영;김세영;정미영
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.948-951
    • /
    • 2008
  • Ubiquitous sensor network (USN) based on ZigBee communication protocol has been used in various application fields, such as home-network, intelligent building and machine, logistics, environmental monitoring, military field, security field and etc. The ZigBee is targeted at radio-frequency application that require a low data rate, long battery life and secure network. Especially, the USN system can be applied efficiently to building-indoor where the complex geometry is adopted. In this study, all 90 points of railway cabin indoor were monitored for temperature and humidity using USN technology. All sensors were pre/post-calibrated and the temperature/humidity change were analyzed in a railway cabin in real-time. The results would be useful to develop the cabin heating, ventilating and air conditing (HVAC) system to meet all passengers' thermal comfort regardless of their seat position.

  • PDF

Embossed Structural Skin for Tall Buildings

  • Song, Jin Young;Lee, Donghun;Erikson, James;Hao, Jianming;Wu, Teng;Kim, Bonghwan
    • 국제초고층학회논문집
    • /
    • 제7권1호
    • /
    • pp.17-32
    • /
    • 2018
  • This paper explores the function of a structural skin with an embossed surface applicable to use for tall building structures. The major diagrid system with a secondary embossed surface structure provides an enhanced perimeter structural system by increasing tube section areas and reduces aerodynamic loads by disorienting major organized structure of winds. A parametric study used to investigate an optimized configuration of the embossed structure revealed that the embossed structure has a structural advantage in stiffening the structure, reducing lateral drift to 90% compared to a non-embossed diagrid baseline model, and results of wind load analysis using computational fluid dynamics, demonstrated the proposed embossed system can reduce. The resulting undulating embossed skin geometry presents both opportunities for incorporating versatile interior environments as well as unique challenges for daylighting and thermal control of the envelope. Solar and thermal control requires multiple daylighting solutions to address each local façade surface condition in order to reduce energy loads and meet occupant comfort standards. These findings illustrate that although more complex in geometry, architects and engineers can produce tall buildings that have less impact on our environment by utilizing structural forms that reduce structural steel needed for stiffening, thus reducing embodied $CO^2$, while positively affecting indoor quality and energy performance, all possible while creating a unique urban iconography derived from the performance of building skin.

Components of wind -tunnel analysis using force balance test data

  • Ho, T.C. Eric;Jeong, Un Yong;Case, Peter
    • Wind and Structures
    • /
    • 제18권4호
    • /
    • pp.347-373
    • /
    • 2014
  • Since its development in the early 1980's the force balance technique has become a standard method in the efficient determination of structural loads and responses. Its usefulness lies in the simplicity of the physical model, the relatively short records required from the wind tunnel testing and its versatility in the use of the data for different sets of dynamic properties. Its major advantage has been the ability to provide results in a timely manner, assisting the structural engineer to fine-tune their building at an early stage of the structural development. The analysis of the wind tunnel data has evolved from the simple un-coupled system to sophisticated methods that include the correction for non-linear mode shapes, the handling of complex geometry and the handling of simultaneous measurements on multiple force balances for a building group. This paper will review some of the components in the force balance data analysis both in historical perspective and in its current advancement. The basic formulation of the force balance methodology in both frequency and time domains will be presented. This includes all coupling effects and allows the determination of the resultant quantities such as resultant accelerations, as well as various load effects that generally were not considered in earlier force balance analyses. Using a building model test carried out in the wind tunnel as an example case study, the effects of various simplifications and omissions are discussed.

항공 라이다 데이터로부터 확장 카이 알고리즘을 이용한 건물경계선 추출 (Extracting Building Boundary from Aerial LiDAR Points Data Using Extended χ Algorithm)

  • 조홍범;이광일;최현석;조우석;조영원
    • 한국측량학회지
    • /
    • 제31권2호
    • /
    • pp.111-119
    • /
    • 2013
  • 항공 라이다로부터 획득한 대용량의 3차원 점 데이터로부터 대상 물체의 윤곽정보를 추출하는 것은 데이터 처리 과정에서 필수적이며 기반적인 기술 중의 하나이다. 특히 인공 구조물인 건물은 복잡한 현대 도시를 구성하는 주요 구조물이며 그 형태가 명확하기에 윤곽 정보의 추출 과정이 더욱 중요하다 할 수 있다. 본 연구에서는 항공 라이다를 이용하여 얻어진 건물을 구성하는 3차원 점 데이터로부터 건물의 윤곽정보를 추출하기 위하여 점 데이터의 기하정보만을 이용한 확장 카이(${\chi}$-Chi) 알고리즘을 제안한다. 제안된 알고리즘은 임의의 점군을 델로니(Delaunay) 삼각망으로 구성하고 특정 조건을 만족하는 변(edge)를 제거하는 과정을 통하여 구현된다. 덧붙여, 전체적인 추출과정의 효율화를 위해서 델로니 삼각망의 구성을 스윕헐 알고리즘을 적용하여 수행하였다. 본 연구에서 제안하는 확장 카이 알고리즘의 성능을 확인하기 위하여 본 연구와 같은 목적으로 개발된 인케이싱 폴리곤 제작 알고리즘과 알파 쉐이프 알고리즘을 비교하였고 기 제작된 건물의 도화정보를 이용하여 윤곽정보 추출의 정확도를 비교하였다. 실험결과, 본 연구에서 제안한 알고리즘은 기존의 알고리즘들보다 윤곽정보 추출 속도 및 정확도가 향상됨을 확인하였다.

지하공간 침수해석을 위한 2차원 흐름모형의 적용성 검토 (A Study on Application of 2-Dimensional Flow Models to Inundation on Underground Space System)

  • 곽성현;이경수;이동섭;류시완
    • 한국안전학회지
    • /
    • 제30권6호
    • /
    • pp.78-84
    • /
    • 2015
  • In order to increase the utilization of limited space in urban area, it can be a good solution to make use of underground space. For the last few decades, underground space systems, such as underground passages, subway stations, and underground shopping arcades, have been constructed in many cities all over the country. Despite of the advantages on the utilization of space in urban area, underground space systems have always been exposed to the risk of inundations resulted from severe rain storms. In this study, it has been examined to apply 2-D flow models (TUFLOW and FLUMEN) to establishing the preventive measures to the risk of flood. For the part with relatively complex configuration, such as a corridor junction, 2-D flow models present the detailed information about the effect of geometry on the inundation events and the temporal and spatial distribution of inundation over the space. From the result, it can be concluded that the 2-D flow model can be the effective implement for establishing the proper measure to the inundation on underground space systems, which generally have relatively long and narrow geometry with complex inner configuration.

DESIGN AND IMPLEMENTATION OF FEATURE-BASED 3D GEO-SPATIAL RENDERING SYSTEM USING OPENGL API

  • Kim Seung-Yeb;Lee Kiwon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.321-324
    • /
    • 2005
  • In these days, the management and visualization of 3D geo-spatial information is regarded as one of an important issue in GiS and remote sensing fields. 3D GIS is considered with the database issues such as handling and managing of 3D geometry/topology attributes, whereas 3D visualization is basically concerned with 3D computer graphics. This study focused on the design and implementation for the OpenGL API-based rendering system for the complex types of 3D geo-spatial features. In this approach 3D features can be separately processed with the functions of authoring and manipulation of terrain segments, building segments, road segments, and other geo-based things with texture mapping. Using this implementation, it is possible to the generation of an integrated scene with these complex types of 3D features. This integrated rendering system based on the feature-based 3D-GIS model can be extended and effectively applied to urban environment analysis, 3D virtual simulation and fly-by navigation in urban planning. Furthermore, we expect that 3D-GIS visualization application based on OpenGL API can be easily extended into a real-time mobile 3D-GIS system, soon after the release of OpenGLIES which stands for OpenGL for embedded system, though this topic is beyond the scope of this implementation.

  • PDF

Development of Mobile 3D Urban Landscape Authoring and Rendering System

  • Lee Ki-Won;Kim Seung-Yub
    • 대한원격탐사학회지
    • /
    • 제22권3호
    • /
    • pp.221-228
    • /
    • 2006
  • In this study, an integrated 3D modeling and rendering system dealing with 3D urban landscape features such as terrain, building, road and user-defined geometric ones was designed and implemented using $OPENGL\;{|}\;ES$ (Embedded System) API for mobile devices of PDA. In this system, the authoring functions are composed of several parts handling urban landscape features: vertex-based geometry modeling, editing and manipulating 3D landscape objects, generating geometrically complex type features with attributes for 3D objects, and texture mapping of complex types using image library. It is a kind of feature-based system, linked with 3D geo-based spatial feature attributes. As for the rendering process, some functions are provided: optimizing of integrated multiple 3D landscape objects, and rendering of texture-mapped 3D landscape objects. By the active-synchronized process among desktop system, OPENGL-based 3D visualization system, and mobile system, it is possible to transfer and disseminate 3D feature models through both systems. In this mobile 3D urban processing system, the main graphical user interface and core components is implemented under EVC 4.0 MFC and tested at PDA running on windows mobile and Pocket Pc. It is expected that the mobile 3D geo-spatial information systems supporting registration, modeling, and rendering functions can be effectively utilized for real time 3D urban planning and 3D mobile mapping on the site.

고해상도 SAR 영상을 이용한 도심지 건물 재구성 (Urban Area Building Reconstruction Using High Resolution SAR Image)

  • 강아름;이승국;김상완
    • 대한원격탐사학회지
    • /
    • 제29권4호
    • /
    • pp.361-373
    • /
    • 2013
  • 공간해상도 약 1 m의 고해상도 X-band SAR 위성이 이용되면서 SAR를 이용한 도심지 모니터링, 표적탐지, 건물 재구성에 관한 연구가 진행되고 있다. 본 연구에서는 고해상도 TerraSAR-X SAR 영상을 이용한 도심지 건물 재구성을 수행하였다. 도심지 건물 재구성을 위하여 1:25,000 수치지형도로부터 건물의 외곽선을 추출하였으며, 추출한 건물의 외곽선을 기반으로 SAR 영상에서 모서리반사 위치를 찾았다. KS 테스트(Kolmogorov-Smirnov Test)에 기반하여 고해상도 SAR 진폭영상의 건물 모서리반사 위치로부터 레이오버 길이를 측정하여 건물의 초기 높이를 설정하였다. 진폭영상을 이용하여 추출한 건물의 초기 높이 기준 -10 m에서 +10 m로 건물의 높이를 변화시키며 도심지에 적합한 간섭위상 시뮬레이션을 수행하여 TerraSAR-X 간섭위상과의 위상 일치성 계산을 하였다. 위상 일치의 경향성 분석을 통해 건물의 높이를 설정해 줌으로써 고해상도 SAR 영상을 이용한 도심지 건물 재구성 연구를 진행하였다. 대전지역의 아파트 단지에 적용한 결과, 진폭영상과 간섭위상을 이용하여 추정된 건물 높이는 LiDAR로부터 추출된 높이를 기준으로 약 1~2 m 정도의 RMSE (Root Mean Square Error)를 보였다. 개발된 알고리즘은 향후 TerraSAR-X와 TanDEM-X 간섭쌍 자료에 적용할 경우, 보다 도심지 모니터링에 효과적으로 이용될 수 있을 것이다.

The use and potential applications of point clouds in simulation of solar radiation for solar access in urban contexts

  • Alkadri, Miktha F.;Turrin, Michela;Sariyildiz, Sevil
    • Advances in Computational Design
    • /
    • 제3권4호
    • /
    • pp.319-338
    • /
    • 2018
  • High-performing architecture should be designed by taking into account the mutual dependency between the new building and the local context. The performative architecture plays an important role to avert any unforeseen failures after the building has been built; particularly ones related to the microclimate impacts that affect the human comfort. The use of the concept of solar envelopes helps designers to construct the developable mass of the building design considering the solar access and the site obstruction. However, the current analysis method using solar envelopes lack in terms of integrating the detailed information of the existing context during the simulation process. In architectural design, often the current site modelling not only absent in preserving the complex geometry but also information on the surface characteristics. Currently, the emerging applications of point clouds offer a great possibility to overcome these limitations, since they include the attribute information such as XYZ as the position information and RGB as the color information. This study particularly presents a comparative analysis between the manually built 3D models and the models generated from the point cloud data. The modelling comparisons focus on the relevant factors of solar radiation and a set of simulation to calculate the performance indicators regarding selected portions of the models. The experimental results emphasize an introduction of the design approach and the dataset visibility of the 3D existing environments. This paper ultimately aims at improving the current architectural decision of support environment means, by increasing the correspondence between the digital models for performance analysis and the real environments (context of design) during the conceptual design phase.

해체 및 실험적 건축가들의 기하학적 디자인 표현 특성에 관한 연구 (A Study on the Expressional characteristics of Geometrical Design in the Deconstructive and Experimental Architects)

  • 황태주
    • 한국실내디자인학회논문집
    • /
    • 제11호
    • /
    • pp.57-63
    • /
    • 1997
  • In the early 20'c, scientific thoughts make a change the absolute and separate concept of space-time into relative concept of continual entity; a kind of ideal world. It suggests that the meaning of geometry as absolute truth with which has endowed human beings would changed to a relative meaning of accumulation in intellectual work on 'nature'. This cognitive changes appeared into absolute arts in 20'c like Cubism, Superematism or Constructivism. De Stijl movement which had recepted the relative concepts like Einstein's 'theory of relativity' as a developed thought from Newton-Cartesian cognition on the world. Abstration would be adequate method for expressing the dynamics and interrelationship between forms and for giving values to indivisual elements in a compositiov. This method had appeared Modern architectural form, as a common framework. The expression characteristics of geometrical design in Deconstructive and Experimental architecture were summerized in four features through the results of the analysis. First, the relation of architectural element and intertextuality is expressed in discontinuation of context and refusal of functional building. Second, the concept of trace expresses as connection of place, decomposing of excavation of trace, trace of axis, trace of fragments. Third, anti-gravity expression is there to express of open cubic, to outgrow of rectangular system, to outgrow of volume, to separate of ground connectiov. Fourth, the complex composition of abstracted geometric form is these to abstracted geometry about indefinite shape, to layer through the overlap and collage, to de-meaning and amusement of form through the pursuit of uncertainty, to indeterminate of formal meaning through operation and composition of similar form cause to the diverse of meaning.

  • PDF