DOI QR코드

DOI QR Code

Extracting Building Boundary from Aerial LiDAR Points Data Using Extended χ Algorithm

항공 라이다 데이터로부터 확장 카이 알고리즘을 이용한 건물경계선 추출

  • 조홍범 ((주)일도엔지니어링) ;
  • 이광일 (인하대학교 토목공학과.대학원) ;
  • 최현석 (인하대학교 토목공학과.대학원) ;
  • 조우석 (인하대학교 토목공학과) ;
  • 조영원 ((주)일도엔지니어링)
  • Received : 2013.01.07
  • Accepted : 2013.04.24
  • Published : 2013.04.30

Abstract

It is essential and fundamental to extract boundary information of target object via massive three-dimensional point data acquired from laser scanner. Especially extracting boundary information of manmade features such as buildings is quite important because building is one of the major components consisting complex contemporary urban area, and has artificially defined shape. In this research, extended ${\chi}$-algorithm using geometry information of point data was proposed to extract boundary information of building from three-dimensional point data consisting building. The proposed algorithm begins with composing Delaunay triangulation process for given points and removes edges satisfying specific conditions process. Additionally, to make whole boundary extraction process efficient, we used Sweep-hull algorithm for constructing Delaunay triangulation. To verify the performance of the proposed extended ${\chi}$-algorithm, we compared the proposed algorithm with Encasing Polygon Generating Algorithm and ${\alpha}$-Shape Algorithm, which had been researched in the area of feature extraction. Further, the extracted boundary information from the proposed algorithm was analysed against manually digitized building boundary in order to test accuracy of the result of extracting boundary. The experimental results showed that extended ${\chi}$-algorithm proposed in this research proved to improve the speed of extracting boundary information compared to the existing algorithm with a higher accuracy for detecting boundary information.

항공 라이다로부터 획득한 대용량의 3차원 점 데이터로부터 대상 물체의 윤곽정보를 추출하는 것은 데이터 처리 과정에서 필수적이며 기반적인 기술 중의 하나이다. 특히 인공 구조물인 건물은 복잡한 현대 도시를 구성하는 주요 구조물이며 그 형태가 명확하기에 윤곽 정보의 추출 과정이 더욱 중요하다 할 수 있다. 본 연구에서는 항공 라이다를 이용하여 얻어진 건물을 구성하는 3차원 점 데이터로부터 건물의 윤곽정보를 추출하기 위하여 점 데이터의 기하정보만을 이용한 확장 카이(${\chi}$-Chi) 알고리즘을 제안한다. 제안된 알고리즘은 임의의 점군을 델로니(Delaunay) 삼각망으로 구성하고 특정 조건을 만족하는 변(edge)를 제거하는 과정을 통하여 구현된다. 덧붙여, 전체적인 추출과정의 효율화를 위해서 델로니 삼각망의 구성을 스윕헐 알고리즘을 적용하여 수행하였다. 본 연구에서 제안하는 확장 카이 알고리즘의 성능을 확인하기 위하여 본 연구와 같은 목적으로 개발된 인케이싱 폴리곤 제작 알고리즘과 알파 쉐이프 알고리즘을 비교하였고 기 제작된 건물의 도화정보를 이용하여 윤곽정보 추출의 정확도를 비교하였다. 실험결과, 본 연구에서 제안한 알고리즘은 기존의 알고리즘들보다 윤곽정보 추출 속도 및 정확도가 향상됨을 확인하였다.

Keywords

References

  1. Lee, J and Kim, Y. (2012), Building Boundary Reconstruction from Airborne Lidar Data by Adaptive Convex Hull Algorithm , Korean Journal of Geomatics, Vol. 30 No. 3, pp. 305-312. https://doi.org/10.7848/ksgpc.2012.30.3.305
  2. Lee, Y. (2003), A Study on Automatic Extraction of Buildings Using LIDAR with Aerial Imagery, Master Thesis, Inha University, pp. 14-17.
  3. Cho, W and Lee, Y and Jwa, Y. (2003), Automatic Extraction of Buildings using Aerial Photo and Airborne LIDAR Data, Korean Journal of Remote Sensing, Vol. 19 No. 4, pp. 307-317. https://doi.org/10.7780/kjrs.2003.19.4.307
  4. Cho, H. (2008), 3D Building Modeling Using Aerial LiDAR Data, Master Thesis, Inha University, pp. 42-45.
  5. Edelsbrunner, H., Kirkpatrick D., Seidel R. (1983), On the shape of a set of points in the plane, IEEE Transactions on Information Theory 29, issue 4, pp. 551-559. https://doi.org/10.1109/TIT.1983.1056714
  6. Duckham, M., Kulik, L., Worboys, M., Galton, A. (2008), Efficient generation of simple polygons for characterizing the shape of a set of points in the plane, Pattern Recognition, Vol. 41, Issue 10, pp. 3224-3236. https://doi.org/10.1016/j.patcog.2008.03.023
  7. Naus, T., Horizons, F. (2008), Unbiased LiDAR Data Measurement, URL: http://www.asprs.org/a/society/committees/lidar/Unbiased_measurement.pdf, ASPRS PAD Lidar Committee (ASPRS LC), Portland, (last date accessed: 02 February 2013)
  8. Shen, W. (2008), Buliding Boundary Extraction Based on LiDAR Point Clouds Data, International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 37, 157-162, Natural Resources Canada
  9. Sinclair, D. A. (2010), S-hull: a fast radial sweep-hull routine for Delaunay triangulation, http://www.s-hull.org/, s-hull.org, Cambridge, (last date accessed: 02 February 2013)
  10. Zebuwals, S., Nguyen, H., Wei H., Yadegar, J. (2009), Fusion of LiDAR and aerial imagery for accurate building footprint extraction, Image Processing: Machine Vision Applications II, Vol. 7251, pp. 72510Z-72510Z-11

Cited by

  1. LiDAR 데이터와 RANSAC 알고리즘을 이용한 철도 전력선 자동탐지에 관한 연구 vol.31, pp.4, 2013, https://doi.org/10.7848/ksgpc.2013.31.4.331
  2. 지표면 라이다 데이터를 고려한 건물 외곽선 결정 vol.34, pp.5, 2013, https://doi.org/10.7848/ksgpc.2016.34.5.503
  3. Development of a Parcel-Level Land Boundary Extraction Algorithm for Aerial Imagery of Regularly Arranged Agricultural Areas vol.13, pp.6, 2013, https://doi.org/10.3390/rs13061167