• Title/Summary/Keyword: Complex Filter

Search Result 472, Processing Time 0.034 seconds

A CMOS Complex Filter with a New Automatic Tuning Method for PHS Application (PHS용 Automatic Tuning 방법을 이용한 Complex Filter)

  • Ko, Dong-Hyun;Park, Do-Jin;Jung, Sung-Kyu;Pu, Young-Gun;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.10
    • /
    • pp.17-22
    • /
    • 2007
  • This paper presents a baseband complex bandpass filter for PHS applications with a new automatic tuning method. The full-CMOS PHS transceiver is implemented by adopting the Low-IF architecture to overcome the DCoffset problems. To meet the Adjacent Channel Selectivity (ACS) performance, the 3rd-order Chebyshev complex bandpass filter is designed as the baseband channel-select filter. The new corner frequency tuning method is proposed to compensate the process variation. This method can reduce the noise level due to MOS switches. The filter was fabricated using a 0.35{\mu}m$ CMOS process, and the power consumption is 12mW.

우리나라 의용생체공학의 현황과 전망

  • 이충웅
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.83-88
    • /
    • 1989
  • This paper is a study on the design of adptive filter for QRS complex detection. We propose a simple adaptive algorithm to increase capability of noise cancelation in QRS complex detection with two stage adaptive filter. At the first stage, background noise is removed and at the next stage, only spectrum of QRS complex components is passed. Two adaptive filters can afford to keep track of the changes of both noise and QRS complex. Each adaptive filter consists of prediction error filter and FIR filter The impulse response of FIR filter uses coefficients of prediction error filter. The detection rates for 105 and 108 of MIT/BIH data base were 99.3% and 97.4% respectively.

  • PDF

Synthesis of a Complex $R^1CR$ filter with finite transmission zeros

  • Kikuchi, Hidehiro;Ishibashi, Yukio
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1863-1866
    • /
    • 2002
  • This paper describes synthesis of a complex R$^{i}$ CR filter with a finite transmission zero except zero frequency. First, a new kernel function is proposed. Secondly, how to determine the element values included in the R$^{i}$ CR filter is described. A fifth-order R$^{i}$ CR filter is designed. Finally, the sensitivity property of the proposed filter is evaluated through computer simulation.

  • PDF

Design of Two Stage Amative Filters for Real time QRS Detection (실시간 ECG 분석을 위한 QRS 검출에 관한 연구 -2단 적응필터을 이용한-)

  • 이순혁;윤형로
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.49-56
    • /
    • 1995
  • This paper is a study on the design of adptive filter for QRS complex detection. We propose a simple adaptive algorithm to increase capability of noise cancelation in QRS complex detection with two stage adaptive filter. At the first stage, background noise is removed and at the next stage, only spectrum of QRS complex components is passed. Two adaptive filters can afford to keep track of the changes of both noise and QRS complex. Each adaptive filter consists of prediction error filter and FIR filter. The impulse response of FIR filter uses coefficients of prediction error filter. The detection rates for 105 and 108 of MIT/BIH data base were 99.3% and 97.4% respectively.

  • PDF

Fast 2-D Complex Gabor Filter with Kernel Decomposition (커널 분해를 통한 고속 2-D 복합 Gabor 필터)

  • Lee, Hunsang;Um, Suhyuk;Kim, Jaeyoon;Min, Dongbo
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1157-1165
    • /
    • 2017
  • 2-D complex Gabor filtering has found numerous applications in the fields of computer vision and image processing. Especially, in some applications, it is often needed to compute 2-D complex Gabor filter bank consisting of the 2-D complex Gabor filtering outputs at multiple orientations and frequencies. Although several approaches for fast 2-D complex Gabor filtering have been proposed, they primarily focus on reducing the runtime of performing the 2-D complex Gabor filtering once at specific orientation and frequency. To obtain the 2-D complex Gabor filter bank output, existing methods are repeatedly applied with respect to multiple orientations and frequencies. In this paper, we propose a novel approach that efficiently computes the 2-D complex Gabor filter bank by reducing the computational redundancy that arises when performing the Gabor filtering at multiple orientations and frequencies. The proposed method first decomposes the Gabor basis kernels to allow a fast convolution with the Gaussian kernel in a separable manner. This enables reducing the runtime of the 2-D complex Gabor filter bank by reusing intermediate results of the 2-D complex Gabor filtering computed at a specific orientation. Experimental results demonstrate that our method runs faster than state-of-the-arts methods for fast 2-D complex Gabor filtering, while maintaining similar filtering quality.

Complex Fuzzy Logic Filter and Learning Algorithm

  • Lee, Ki-Yong;Lee, Joo-Hum
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.1E
    • /
    • pp.36-43
    • /
    • 1998
  • A fuzzy logic filter is constructed from a set of fuzzy IF-THEN rules which change adaptively to minimize some criterion function as new information becomes available. This paper generalizes the fuzzy logic filter and it's adaptive filtering algorithm to include complex parameters and complex signals. Using the complex Stone-Weierstrass theorem, we prove that linear combinations of the fuzzy basis functions are capable of uniformly approximating and complex continuous function on a compact set to arbitrary accuracy. Based on the fuzzy basis function representations, a complex orthogonal least-squares (COLS) learning algorithm is developed for designing fuzzy systems based on given input-output pairs. Also, we propose an adaptive algorithm based on LMS which adjust simultaneously filter parameters and the parameter of the membership function which characterize the fuzzy concepts in the IF-THEN rules. The modeling of a nonlinear communications channel based on a complex fuzzy is used to demonstrate the effectiveness of these algorithm.

  • PDF

Equalization of 8-VSB Signals using Complex-Valued Decision Feedback Filter (복소수 판정궤환 필터를 이용한 8-VSB 신호의 채널등화)

  • Chung, Won-Zoo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.7
    • /
    • pp.332-334
    • /
    • 2006
  • In this paper, we present an equalization scheme for 8-VSB signals for the ATSC DTV system. We propose a complex feedback filter and complex feedback sample generator for DFE to equalize 8-VSB signals in order to efficiently remove multipath distortions causing leakages from the qudrature component. We show that the proposed structure outperforms the conventional DFE used for the digital VSB which uses a real-valued feedback filter with real-valued decisions.

A Note on Synthesis of a Complex Coefficient BPF Based on a Real Coefficient BPF

  • Shouno, Kazuhiro;Ishibashi, Yukio
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.571-574
    • /
    • 2000
  • A complex coefficient filter obtained by directly exchanging several reactance elements included in a real coefficient, filter for imaginary valued resistors is described. By using the proposed method, four varieties of complex coefficient filter are obtained. The stability problem is described. Finally, the frequency responses of the proposed kiters are shown.

  • PDF

A design of Adaptive Decision-feedback Equalizer Module using Redundant Binary Complex Filter (Redundant Binary 복소수 필터를 이용한 적응 결정귀환 등화기 모듈 설계)

  • 김호하;안병규신경욱
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1125-1128
    • /
    • 1998
  • A new architecture for high-speed implementation of adaptive decision-feedback equalizer (ADFE) applicable to wide-band digital wireless modems is described. Rather than using conventional two's complement arithmetic, a novel complex-valued filter structure is devised, which is based on redundant binary (RB) arithmetic. The proposed RB complex-valued filter reduces the critical path delay of ADFE, as well as leads to a more compact implementation than conventional methods. Also, the carry-propagation free (CPF) operation of the RB arithmetic enhances its speed. To demonstrate the proposed method, a prototype chip set is designed. They are designed to contain two complexvalued filter taps along with their coefficient updating circuits, and can be cascaded to implement loger filter taps for high bit-rate applications.

  • PDF