• Title/Summary/Keyword: Compensation topology

Search Result 58, Processing Time 0.029 seconds

DC Offset Current Compensation Method of Transformeless Fuel Cell/PV PCS (무변압기형 연료전지/태양광용 PCS의 직류분 보상기법)

  • Park, Bong-Hee;Kim, Seung-Min;Choi, Ju-Yeop;Choy, Ick;Lee, Sang-Chul;Lee, Dong-Ha;Lee, Young-Kwon
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.92-97
    • /
    • 2013
  • This paper proposes DC offset current compensation method of transformerless fuel cell/PV PCS. DC offset current is generated by the unbalanced internal resistance of the switching devices in full bridge topology. The other cause is the sensitivity of the current sensor, which is lower than DSP in resolution. If power converter system has these causes, the AC output current in the inverter will generate the DC offset. In case of transformerless grid-connected inverter system, DC offset current is fatal to grid-side, which results in saturating grid side transformer. Several simulation results show the difficulties of detecting DC offset current. Detecting DC offset current method consists of the differential amplifiers and PWM is compensated by the output of the Op amp circuit with integrator controller. PSIM simulation verifies that the proposed method is simpler and more effective than using low resolution current sensor alone.

Wind Energy Interface to Grid with Load Compensation by Diode Clamped Multilevel Inverters

  • Samuel, Paulson;Naik, M. Kishore;Gupta, Rajesh;Chandra, Dinesh
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.271-281
    • /
    • 2014
  • Fluctuating wind conditions necessitate the use of a variable speed wind turbine (VSWT) with a AC/DC/AC converter scheme in order to harvest the maximum power from the wind and to decouple the synchronous generator voltage and frequency from the grid voltage and frequency. In this paper, a combination of a three phase diode bridge rectifier (DBR) and a modified topology of the diode clamped multilevel inverter (DCMLI) has been considered as an AC/DC/AC converter. A control strategy has been proposed for the DCMLI to achieve the objective of grid interface of a wind power system together with local load compensation. A novel fixed frequency current control method is proposed for the DCMLI based on the level shifted multi carrier PWM for achieving the required control objectives with equal and uniform switching frequency operation for better control and thermal management with the modified DCMLI. The condition of the controller gain is derived to ensure the operation of the DCMLI at the fixed frequency of the carrier. The converter current injected into the distribution grid is controlled in accordance with the wind power availability. In addition, load compensation is performed as an added facility in order to free the source currents being fed from the grid of harmonic distortion, unbalance and a low power factor even though the load may be unbalanced, non-linear and of a poor power factor. The results are validated using PSCAD/EMTDC simulation studies.

An FPGA-based Fully Digital Controller for Boost PFC Converter

  • Lai, Li;Luo, Ping
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.644-651
    • /
    • 2015
  • This paper introduces a novel digital one cycle control (DOCC) boost power factor correction (PFC) converter. The proposed PFC converter realizes the FPGA-based DOCC control approach for single-phase PFC rectifiers without input voltage sensing or a complicated two-loop compensation design. It can also achieve a high power factor and the operation of low harmonic input current ingredients over universal loads in continuous conduction mode. The trailing triangle modulation adopted in this approach makes the acquisition of the average input current an easy process. The controller implementation is based on a boost topology power circuit with low speed, low-resolution A/D converters, and economical FPGA development board. Experimental results demonstrate that the proposed PFC rectifier can obtain a PF value of up to 0.999 and a minimum THD of at least 1.9% using a 120W prototype.

Analysis and a Compensation Method for Torque Ripple caused by Position Error in Switched Reluctance Motor Position Sensorless Control (스위치드 릴럭턴스 전동기의 위치 센서리스 제어시 위치오차에 의해 발생하는 토크리플 해석과 그 보상 방법)

  • Oh, Ju-Hwan;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.806-807
    • /
    • 2011
  • This paper presents a new sensorless controller used with both the classical sliding mode observer(SMO) and the rate of current change in order to a reduced torque ripple for switched reluctance motor (SRM) sensorless drives. The new sensorless scheme consists of a sliding mode observer (SMO)-based position sensorless approach for high speeds along with a low-resolution discrete the rate of current change for low speeds and standstill. The new position estimation resets between the SMO and the low-resolution of current change according to the speed sign and the position error difference between the SMO and the low-resolution rate of current change. The simulation results show the robustness of this new high performance sensorless control approach with the hybrid sensorless control topology.

  • PDF

Single-Phase Impedance-Source Dynamic Voltage Restorer (단상 임피던스-소스 동적 전압 보상기)

  • Park, H.J.;Jung, Y.G.;Lim, Y.C.
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.458-461
    • /
    • 2008
  • This paper deals with a single-phase impedance-source dynamic voltage restorer (Impedance-DVR) to mitigate voltage sag/swell for the critical loads. The proposed system is composed of passive filter and impedance-source topology inverter. As an ESS(Energy Storage System) of the proposed system is employed the Proton Exchange Membrane Fuel Cells (PEMFC). To calculate and control the compensation voltage, single-phase $^id-^iq$ theory in dq rotating reference frame and PI controller are used. Simulation results under voltage sag and swell are presented to show the performance.

  • PDF

A Study on the Performance Enhancement of HVDC System Using Hybrid Filter and Energy Recovery Filter (11차/13차 고조파를 동시에 제거하는 Single Tuned 필터)

  • Kim C.K.;Yang B.M.;Jeong G.J.;Ahan J.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.717-721
    • /
    • 2003
  • Two non-conventional HVDC converter arrangements are compared. These include the Capacitor Commutated Converter (CCC) in which series capacitors are included between the converter transformer and the valves, and the Controller Series Capacitor Converter (CSCC), based on more conventional topology, in which series capacitors are inserted between the AC filter bus and the AC network. Results show that both options have comparable steady state and transient performance. Danger of ferroresonance with the CSCC option is eliminated by controlling the amount of series compensation. The dynamic performance simulations is peformed by PSCAD/EMTDC

  • PDF

A RULE-BASED APPROACH for AUTOMATIC CONTINGENCY SELECTION in POWER SYSTEMS (자동 상정사고 선택에 관한 룰-베이스적 접근)

  • Park, Young-Moon;Shin, Joong-Rin;Jo, Gang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.118-121
    • /
    • 1987
  • This paper presents a rule-based approach for automatically selecting critical contingencies in electric power systems. The rules required to perform the task are derived from inspection about results of simulation and expertise of operators. And inherent information of system, for example, topology of system configuration, and flow direction in a line by compensation theorem. etc., which are independent of operating point of system, is stored in the database using the off-line calculation. The approach was investigated using the study of a sample test system. Since it is based on the knowledge engineering technique, efficiency of selection can be improved by updating and adding the rules.

  • PDF

Design of a Rceiver MMIC for the CDMA Terminal (CDMA 단말기용 수신단 MMIC 설계)

  • 권태운;최재하
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.65-70
    • /
    • 2001
  • This paper presents a Receiver MMIC for the CDMA terminal. The complete circuit is composed of Low Noise Amplifier, Down Conversion Mixer, Intermediate Frequency Amplifier and Bias circuit. The Bias circuit implementation, which allows for compensation for threshold voltage and power supply voltage variation are provided. The proposed topology has high linearity and low noise characteristics. Results of the designed circuit are as follows: Overall conversion gain is 28.5 dB, input IP3 of LNA is 8 dBm, input IP3 of down conversion mixer is 0 dBm and total DC current consumption is 22.1 mA.

  • PDF

Neutral-point Potential Balancing Method for Switched-Inductor Z-Source Three-level Inverter

  • Wang, Xiaogang;Zhang, Jie
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1203-1210
    • /
    • 2017
  • Switched-inductor (SL) Z-source three-level inverter is a novel high power topology. The SL based impedance network can boost the input dc voltage to a higher value than the single LC impedance network. However, as all the neutral-point-clamped (NPC) inverters, the SL Z-source three-level inverter has to balance the neutral-point (NP) potential too. The principle of the inverter is introduced and then the effects of NP potential unbalance are analyzed. A NP balancing method is proposed. Other than the methods for conventional NPC inverter without Z-source impedance network, the upper and lower shoot-through durations are corrected by the feedforward compensation factors. With the proposed method, the NP potential is balanced and the voltage boosting ability of the Z-source network is not affected obviously. Simulations are conducted to verify the proposed method.

Battery Energy Storage System with Novel High Efficiency Topology (배터리 에너지 저장 시스템을 위한 새로운 고효율 토폴로지)

  • Lee, Il-Ho;Kim, Kyu-Dong;Lee, Yong-Suk;Kim, Jun-Gu;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.431-432
    • /
    • 2012
  • The proposed dc-dc convertor for a battery energy storage system(BESS) can reduce the power rating and bidirectional power flow. This system consist soft-switching bidirectional dc-dc converter so it can reduce the energy loss when charging and discharging mode. Thus it can achieve high efficiency. Also, overall system utilizes the voltage compensation circuit. It is composed of small size and low cost due to reducing the power rating. In this paper, we proposed system about verified by simulation.

  • PDF