• 제목/요약/키워드: Comparative genome analysis

검색결과 224건 처리시간 0.029초

Genomic Analysis of a Freshwater Actinobacterium, "Candidatus Limnosphaera aquatica" Strain IMCC26207, Isolated from Lake Soyang

  • Kim, Suhyun;Kang, Ilnam;Cho, Jang-Cheon
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권4호
    • /
    • pp.825-833
    • /
    • 2017
  • Strain IMCC26207 was isolated from the surface layer of Lake Soyang in Korea by the dilutionto-extinction culturing method, using a liquid medium prepared with filtered and autoclaved lake water. The strain could neither be maintained in a synthetic medium other than natural freshwater medium nor grown on solid agar plates. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain IMCC26207 formed a distinct lineage in the order Acidimicrobiales of the phylum Actinobacteria. The closest relative among the previously identified bacterial taxa was "Candidatus Microthrix parvicella" with 16S rRNA gene sequence similarity of 91.7%. Here, the draft genome sequence of strain IMCC26207, a freshwater actinobacterium, is reported with the description of the genome properties and annotation summary. The draft genome consisted of 10 contigs with a total size of 3,316,799 bp and an average G+C content of 57.3%. The IMCC26207 genome was predicted to contain 2,975 protein-coding genes and 51 non-coding RNA genes, including 45 tRNA genes. Approximately 76.8% of the protein coding genes could be assigned with a specific function. Annotation of the IMCC26207 genome showed several traits of adaptation to living in oligotrophic freshwater environments, such as phosphorus-limited condition. Comparative genomic analysis revealed that the genome of strain IMCC26207 was distinct from that of "Candidatus Microthrix" strains; therefore, we propose the name "Candidatus Limnosphaera aquatica" for this bacterium.

식용곤충 갈색거저리에서 분리한 카로테노이드 생성균주인 Pantoea intestinalis SRCM103226 균주의 유전체 해독 (Complete genome sequence of Pantoea intestinalis SRCM103226, a microbial C40 carotenoid zeaxanthin producer)

  • 김진원;하광수;정성엽;정도연
    • 미생물학회지
    • /
    • 제55권2호
    • /
    • pp.167-170
    • /
    • 2019
  • Pantoea intestinalis SRCM103226은 식용곤충 밀웜으로부터 분리하였으며, zeaxanthin을 메인으로 생산하였다. P. intestinalis SRCM103226의 유전체 분석을 실시하여 4,784,919 bp 크기의 염기서열, GC 비율은 53.41%로 나타났으며, 플라스미드는 존재하지 않는다. RAST server를 이용하여 annotation한 결과 4,332개의 코딩유전자, 22개의 rRNA, 85개의 tRNA 유전자가 확인되었다 지놈분석결과 zeaxanthin 생합성회로 5개 유전자를 가지고 있다. 이러한 유전체 정보는 zeaxanthin 생합성 경로의 분자 진화의 비교 유전체학 연구에 대한 기초 정보를 제공한다.

Systems-Level Analysis of Genome-Scale In Silico Metabolic Models Using MetaFluxNet

  • Lee, Sang-Yup;Woo, Han-Min;Lee, Dong-Yup;Choi, Hyun-Seok;Kim, Tae-Yong;Yun, Hong-Seok
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권5호
    • /
    • pp.425-431
    • /
    • 2005
  • The systems-level analysis of microbes with myriad of heterologous data generated by omics technologies has been applied to improve our understanding of cellular function and physiology and consequently to enhance production of various bioproducts. At the heart of this revolution resides in silico genome-scale metabolic model, In order to fully exploit the power of genome-scale model, a systematic approach employing user-friendly software is required. Metabolic flux analysis of genome-scale metabolic network is becoming widely employed to quantify the flux distribution and validate model-driven hypotheses. Here we describe the development of an upgraded MetaFluxNet which allows (1) construction of metabolic models connected to metabolic databases, (2) calculation of fluxes by metabolic flux analysis, (3) comparative flux analysis with flux-profile visualization, (4) the use of metabolic flux analysis markup language to enable models to be exchanged efficiently, and (5) the exporting of data from constraints-based flux analysis into various formats. MetaFluxNet also allows cellular physiology to be predicted and strategies for strain improvement to be developed from genome-based information on flux distributions. This integrated software environment promises to enhance our understanding on metabolic network at a whole organism level and to establish novel strategies for improving the properties of organisms for various biotechnological applications.

Complete Genomic Characterization of Two Beet Soil-Borne Virus Isolates from Turkey: Implications of Comparative Analysis of Genome Sequences

  • Moradi, Zohreh;Maghdoori, Hossein;Nazifi, Ehsan;Mehrvar, Mohsen
    • The Plant Pathology Journal
    • /
    • 제37권2호
    • /
    • pp.152-161
    • /
    • 2021
  • Sugar beet (Beta vulgaris L.) is known as a key product for agriculture in several countries across the world. Beet soil-borne virus (BSBV) triggers substantial economic damages to sugar beet by reducing the quantity of the yield and quality of the beet sugars. We conducted the present study to report the complete genome sequences of two BSBV isolates in Turkey for the first time. The genome organization was identical to those previously established BSBV isolates. The tripartite genome of BSBV-TR1 and -TR3 comprised a 5,835-nucleotide (nt) RNA1, a 3,454-nt RNA2, and a 3,005-nt RNA3 segment. According to sequence identity analyses, Turkish isolates were most closely related to the BSBV isolate reported from Iran (97.83-98.77% nt identity). The BSBV isolates worldwide (n = 9) were phylogenetically classified into five (RNA-coat protein read through gene [CPRT], TGB1, and TGB2 segments), four (RNA-rep), or three (TGB3) lineages. In genetic analysis, the TGB3 revealed more genetic variability (Pi = 0.034) compared with other regions. Population selection analysis revealed that most of the codons were generally under negative selection or neutral evolution in the BSBV isolates studied. However, positive selection was detected at codon 135 in the TGB1, which could be an adaptation in order to facilitate the movement and overcome the host plant resistance genes. We expect that the information on genome properties and genetic variability of BSBV, particularly in TGB3, TGB1, and CPRT genes, assist in developing effective control measures in order to prevent severe losses and make amendments in management strategies.

미생물의 유전자(Genome) 해석과 임상세균학에 이용 (Microbial Genome Analysis and Application to Clinical Bateriology)

  • 김성광
    • Journal of Yeungnam Medical Science
    • /
    • 제19권1호
    • /
    • pp.1-10
    • /
    • 2002
  • With the establishment of rapid sequence analysis of 16S rRNA and the recognition of its potential to determine the phylogenetic position of any prokaryotic organism, the role of 16S rRNA similarities in the present species definition in bacteriology need to be clarified. Comparative studies clearly reveal the limitations of the sequence analysis of this conserved gene and gene product in the determination of relationship at the pathogenic strain level for which DNA-DNA reassociation experiments still constitute the superior method. Since today the primary structure of 16S rRNA is easier to determine than hybridization between DNA strands, the strength of the sequence analysis is to recognize the level at which DNA pairing studies need to be performed, which certainly applies to similarities of 97% and higher.

  • PDF

Comparative Genome Analysis of Psychrobacillus Strain PB01, Isolated from an Iceberg

  • Choi, Jun Young;Kim, Sun Chang;Lee, Pyung Cheon
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권2호
    • /
    • pp.237-243
    • /
    • 2020
  • A novel psychrotolerant Psychrobacillus strain PB01, isolated from an Antarctic iceberg, was comparatively analyzed with five related strains. The complete genome of strain PB01 consists of a single circular chromosome (4.3 Mb) and a plasmid (19 Kb). As potential low-temperature adaptation strategies, strain PB01 has four genes encoding cold-shock proteins, two genes encoding DEAD-box RNA helicases, and eight genes encoding transporters for glycine betaine, which can serve as a cryoprotectant, on the genome. The pan-genome structure of the six Psychrobacillus strains suggests that strain PB01 might have evolved to adapt to extreme environments by changing its genome content to gain higher capacity for DNA repair, translation, and membrane transport. Notably, strain PB01 possesses a complete TCA cycle consisting of eight enzymes as well as three additional Helicobacter pylori-type enzymes: ferredoxin-dependent 2-oxoglutarate synthase, succinyl-CoA/acetoacetyl-CoA transferase, and malate/quinone oxidoreductase. The co-existence of the genes for TCA cycle enzymes has also been identified in the other five Psychrobacillus strains.

미생물 유전체 프로젝트 수행을 위한 Base-Calling 오류 감지 프로그램 및 알고리즘 개발 (A Base-Calling Error Detection Program for Use in Microbial Genome Projects)

  • 이대상;박기정
    • 미생물학회지
    • /
    • 제43권4호
    • /
    • pp.317-320
    • /
    • 2007
  • 미생물 유전체 프로젝트를 수행하는 과정에서 발생하는 base-calling 오류를 포함하는 것으로 의심되는 유전자나 염기서열의 리스트를 보여 주는 프로그램을 개발하였다. 이 프로그램의 모듈들은 base-calling 오류로 의심되는 염기들의 후보군을 유전체 프로젝트를 수행하는 주요 단계에서 감지할 수 있도록 하였다. 이들 프로그램들은 초기 단계에서는 Phrap 파일에 존재하는 contig assembly 정보를 이용하여 base-calling 오류를 감지하는 모듈, 중간 단계에서는 상동성 검색 결과물로부터 frame skift 돌연변이의 진위 유무를 분석할 수 있는 모듈, 마지막 단계에서는, 이미 발표된 미생물 유전체와 같은 종으로부터 유래된 균주에 대한 유전체 프로젝트를 수행할 경우, 비교유전체 분석 기법을 활용하여 base-calling 오류 가능성이 높은 서열의 후보군을 추출하여 해당서열의 크로마토그램파일을 유전체 연구자가 볼 수 있는 모듈로 구성되어 있다.

CGHscape: A Software Framework for the Detection and Visualization of Copy Number Alterations

  • Jeong, Yong-Bok;Kim, Tae-Min;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • 제6권3호
    • /
    • pp.126-129
    • /
    • 2008
  • The robust identification and comprehensive profiling of copy number alterations (CNAs) is highly challenging. The amount of data obtained from high-throughput technologies such as array-based comparative genomic hybridization is often too large and it is required to develop a comprehensive and versatile tool for the detection and visualization of CNAs in a genome-wide scale. With this respective, we introduce a software framework, CGHscape that was originally developed to explore the CNAs for the study of copy number variation (CNV) or tumor biology. As a standalone program, CGHscape can be easily installed and run in Microsoft Windows platform. With a user-friendly interface, CGHscape provides a method for data smoothing to cope with the intrinsic noise of array data and CNA detection based on SW-ARRAY algorithm. The analysis results can be demonstrated as log2 plots for individual chromosomes or genomic distribution of identified CNAs. With extended applicability, CGHscape can be used for the initial screening and visualization of CNAs facilitating the cataloguing and characterizing chromosomal alterations of a cohort of samples.

Complete Mitochondrial Genome of Haplorchis taichui and Comparative Analysis with Other Trematodes

  • Lee, Dongmin;Choe, Seongjun;Park, Hansol;Jeon, Hyeong-Kyu;Chai, Jong-Yil;Sohn, Woon-Mok;Yong, Tai-Soon;Min, Duk-Young;Rim, Han-Jong;Eom, Keeseon S.
    • Parasites, Hosts and Diseases
    • /
    • 제51권6호
    • /
    • pp.719-726
    • /
    • 2013
  • Mitochondrial genomes have been extensively studied for phylogenetic purposes and to investigate intra- and interspecific genetic variations. In recent years, numerous groups have undertaken sequencing of platyhelminth mitochondrial genomes. Haplorchis taichui (family Heterophyidae) is a trematode that infects humans and animals mainly in Asia, including the Mekong River basin. We sequenced and determined the organization of the complete mitochondrial genome of H. taichui. The mitochondrial genome is 15,130 bp long, containing 12 protein-coding genes, 2 ribosomal RNAs (rRNAs, a small and a large subunit), and 22 transfer RNAs (tRNAs). Like other trematodes, it does not encode the atp8 gene. All genes are transcribed from the same strand. The ATG initiation codon is used for 9 protein-coding genes, and GTG for the remaining 3 (nad1, nad4, and nad5). The mitochondrial genome of H. taichui has a single long non-coding region between trnE and trnG. H. taichui has evolved as being more closely related to Opisthorchiidae than other trematode groups with maximal support in the phylogenetic analysis. Our results could provide a resource for the comparative mitochondrial genome analysis of trematodes, and may yield genetic markers for molecular epidemiological investigations into intestinal flukes.

Comparison of Non-amplified and Amplified DNA Preparation Methods for Array-comparative Gnomic Hybridization Analysis

  • Joo, Hong-Jin;Jung, Seung-Hyun;Yim, Seon-Hee;Kim, Tae-Min;Xu, Hai-Dong;Shin, Seung-Hun;Kim, Mi-Young;Kang, Hyun-Mi;Chung, Yeun-Jun
    • Molecular & Cellular Toxicology
    • /
    • 제4권3호
    • /
    • pp.246-252
    • /
    • 2008
  • Tumor tissue is usually contaminated by normal tissue components, which reduces the sensitivity of analysis for exploring genetic alterations. Although microdissection has been adopted to minimize the contamination of tumor DNA with normal cell components, there is a concern over the amount of microdissected DNA not enough to be applied to array-CGH reaction. To amplify the extracted DNA, several whole genome amplification (WGA) methods have been developed, but objective comparison of the array-CGH outputs using different types of WGA methods is still scarce. In this study, we compared the performance of non-amplified microdissected DNA and DNA amplified in 2 WGA methods such as degenerative oligonucleotide primed (DOP)-PCR, and multiple strand displacement amplification (MDA) using Phi 29 DNA polymerase. Genomic DNA was also used to make a comparison. We applied those 4 DNAs to whole genome BAC array to compare the false positive detection rate (FPDR) and sensitivity in detecting copy number alterations under the same hybridization condition. As a result microdissected DNA method showed the lowest FPDR and the highest sensitivity. Among WGA methods, DOP-PCR amplified DNA showed better sensitivity but similar FPDR to MDA-amplified method. These results demonstrate the advantage and applicability of microdissection for array-CGH analysis, and provide useful information for choosing amplification methods to study copy number alterations, especially based on precancerous and microscopically invaded lesions.