DOI QR코드

DOI QR Code

Complete genome sequence of Pantoea intestinalis SRCM103226, a microbial C40 carotenoid zeaxanthin producer

식용곤충 갈색거저리에서 분리한 카로테노이드 생성균주인 Pantoea intestinalis SRCM103226 균주의 유전체 해독

  • Kim, Jin Won (Microbial Institute for Fermentation Industry (MIFI)) ;
  • Ha, Gwangsu (Microbial Institute for Fermentation Industry (MIFI)) ;
  • Jeong, Seong-Yeop (Microbial Institute for Fermentation Industry (MIFI)) ;
  • Jeong, Do-Youn (Microbial Institute for Fermentation Industry (MIFI))
  • 김진원 ((재)발효미생물산업진흥원) ;
  • 하광수 ((재)발효미생물산업진흥원) ;
  • 정성엽 ((재)발효미생물산업진흥원) ;
  • 정도연 ((재)발효미생물산업진흥원)
  • Received : 2019.03.25
  • Accepted : 2019.04.10
  • Published : 2019.06.30

Abstract

Pantoea intestinalis SRCM103226, isolated from edible insect mealworm overproduces zeaxanthin as a main carotenoid. The complete genome of P. intestinalis SRCM103226 was sequenced using the Pacific Biosciences (PacBio) RS II platform. The genome of P. intestinalis SRCM103226 comprises a 4,784,919 bp circular chromosome (53.41% G+C content), and is devoid of any extrachromosomal plasmids. Annotation using the RAST server reveals 4,332 coding sequences and 107 RNAs (22 rRNA genes, 85 tRNA genes). Genome annotation analysis revealed that it has five genes involved in the carotenoid pathway. The genome information provides fundamental knowledge for comparative genomics studies of the zeaxanthin pathway.

Pantoea intestinalis SRCM103226은 식용곤충 밀웜으로부터 분리하였으며, zeaxanthin을 메인으로 생산하였다. P. intestinalis SRCM103226의 유전체 분석을 실시하여 4,784,919 bp 크기의 염기서열, GC 비율은 53.41%로 나타났으며, 플라스미드는 존재하지 않는다. RAST server를 이용하여 annotation한 결과 4,332개의 코딩유전자, 22개의 rRNA, 85개의 tRNA 유전자가 확인되었다 지놈분석결과 zeaxanthin 생합성회로 5개 유전자를 가지고 있다. 이러한 유전체 정보는 zeaxanthin 생합성 경로의 분자 진화의 비교 유전체학 연구에 대한 기초 정보를 제공한다.

Keywords

MSMHBQ_2019_v55n2_167_f0001.png 이미지

Fig. 1. Graphical Circular map of Pantoea intestinalis SRCM103226.

MSMHBQ_2019_v55n2_167_f0002.png 이미지

Fig. 2. Carotenoid profile of Pantoea intestinalis SRCM103226.

MSMHBQ_2019_v55n2_167_f0003.png 이미지

Fig. 3. C40 carotenoid zeaxanthin biosynthesis gene cluster.

Table 1. General genomic features of Pantoea intestinalis SRCM103226

MSMHBQ_2019_v55n2_167_t0001.png 이미지

References

  1. Albermann C. 2011. High versus low level expression of the lycopene biosynthesis genes from Pantoea ananatis in Escherichia coli. Biotechnol. Lett. 33, 313-319. https://doi.org/10.1007/s10529-010-0422-6
  2. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, and Kubal M. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9, 75. https://doi.org/10.1186/1471-2164-9-75
  3. Delcher AL, Harmon D, Kasif S, White O, and Salzberg SL. 1999. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 27, 4636-4641. https://doi.org/10.1093/nar/27.23.4636
  4. Holt NE, Zigmantas D, Valkunas L, Li XP, Niyogi KK, and Fleming GR. 2005. Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307, 433-436. https://doi.org/10.1126/science.1105833
  5. Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA, and Harris SR. 2015. Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol. 16, 294. https://doi.org/10.1186/s13059-015-0849-0
  6. Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, and Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119. https://doi.org/10.1186/1471-2105-11-119
  7. Johnson ET and Schmidt-Dannert C. 2008. Light-energy conversion in engineered microorganisms. Trends Biotechnol. 26, 682-689. https://doi.org/10.1016/j.tibtech.2008.09.002
  8. Kim SH, Kim JH, Lee BY, and Lee PC. 2014. The astaxanthin dideoxyglycoside biosynthesis pathway in Sphingomonas sp. PB304. Appl. Microbiol. Biotechnol. 98, 9993-10003. https://doi.org/10.1007/s00253-014-6050-7
  9. Kim SH, Kim MS, Lee BY, and Lee PC. 2016. Generation of structurally novel short carotenoids and study of their biological activity. Sci. Rep. 6, 21987. https://doi.org/10.1038/srep21987
  10. Kim SH and Lee PC. 2012. Functional expression and extension of staphylococcal staphyloxanthin biosynthetic pathway in Escherichia coli. J. Biol. Chem. 287, 21575-21583. https://doi.org/10.1074/jbc.M112.343020
  11. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, and Phillippy AM. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722-736. https://doi.org/10.1101/gr.215087.116
  12. Krinsky NI, Landrum JT, and Bone RA. 2003. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu. Rev. Nutr. 23, 171-201. https://doi.org/10.1146/annurev.nutr.23.011702.073307
  13. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, and Marra MA. 2009. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639-1645. https://doi.org/10.1101/gr.092759.109
  14. Lagesen K, Hallin P, Rodland EA, Stærfeldt HH, Rognes T, and Ussery DW. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100-3108. https://doi.org/10.1093/nar/gkm160
  15. Lee P and Schmidt-Dannert C. 2002. Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl. Microbiol. Biotechnol. 60, 1-11. https://doi.org/10.1007/s00253-002-1101-x
  16. Lowe TM and Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955-964. https://doi.org/10.1093/nar/25.5.0955
  17. Nishino H, Murakoshi M, Tokuda H, and Satomi Y. 2009. Cancer prevention by carotenoids. Arch. Biochem. Biophys. 483, 165-168. https://doi.org/10.1016/j.abb.2008.09.011
  18. Sedkova N, Tao L, Rouviere PE, and Cheng Q. 2005. Diversity of carotenoid synthesis gene clusters from environmental Enterobacteriaceae strains. Appl. Environ. Microbiol. 71, 8141-8146. https://doi.org/10.1128/AEM.71.12.8141-8146.2005
  19. Song GH, Kim SH, Choi BH, Han SJ, and Lee PC. 2013. Heterologous carotenoid-biosynthetic enzymes: functional complementation and effects on carotenoid profiles in Escherichia coli. Appl. Environ. Microbiol. 79, 610-618. https://doi.org/10.1128/AEM.02556-12
  20. Tatusov RL, Galperin MY, Natale DA, and Koonin EV. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33-36. https://doi.org/10.1093/nar/28.1.33
  21. Walter MH and Strack D. 2011. Carotenoids and their cleavage products: biosynthesis and functions. Nat. Prod. Rep. 28, 663-692. https://doi.org/10.1039/c0np00036a