• 제목/요약/키워드: Common Rail Diesel Engine

검색결과 217건 처리시간 0.024초

4기통 커먼레일 DME 엔진의 분사조건 보정방법에 대한 연구 (Research on the Injection Condition Calibration Process of a Common-rail DME Fueled Engine)

  • 정재우;강정호;김남호;정수진;이호길;강우
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.147-156
    • /
    • 2008
  • As the management of fuel efficiency becomes globally reinforced in attempts to find an environment-friendly vehicle that will operate against global warming, the interest in and the demand for the type of vehicle with a high-efficiency diesel engine using light oil. However, it also emits a greater amount of PM (particulate matter) and NOx than emissions from vehicles using other types of fuels. Therefore, the DME (Dimethyl Ether), an oxygen containing fuel draws attention as an alternative fuel for light oil that can be used for diesel engines since it generates very little smoke. But to develop and compare performance of an electric controlled common-rail DME engine, engine tests requires optimized injection conditions at required engine RPM and engine torque. These injection conditions cannot be set freely and the data configuration through the experimentally repeated application requires much time as well as a significant amount of errors and effort. The object of this study is to configure the basic injection map using the results of the DME engine experiments performed so far. For this, in this study, the functionalization of the required equations were performed along with the basic review of the factors that had influence on the data map. Through this, the information on the injection pressure, injection amount, injection duration, injection timing, etc. under certain operation condition could be obtained.

터보 인터쿨러 커먼레일 디젤기관의 매연, CO 및 $CO_2$ 배출물에 미치는 플라즈마 EGR 조합시스템의 영향에 관한 연구 (A Study on Effect of a Combined Plasma EGR System upon Soot CO and $CO_2$ Emissions in Turbo Intercooler Common-rail Diesel Engines)

  • 배명환;구영진;이봉섭;윤일중
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.1-11
    • /
    • 2006
  • The aim in this study is to develop the combined EGR system with a non-thermal plasma reactor for reducing exhaust emissions and improving fuel economy in turbo intercooler ECU common-rail diesel engines. In this study, the characteristics of soot, CO and $CO_2$ emissions under four kinds of engine loads are experimentally investigated by using a four-cycle, four-cylinder, direct injection type, water-cooled turbo intercooler ECU common-rail diesel engine with a combined plasma exhaust gas recirculation(EGR) system operating at three kinds of engine speeds. The EGR and non-thermal plasma reactor system are used to reduce $NO_x$ emissions, and the non-thermal plasma reactor and turbo intercooler system are used to reduce soot and THC emissions. The plasma system is a flat-to-flat type reactor operated by a plasma power supply. The fuel is sprayed by pilot and main injections at the variable injection timing between BTDC $15^{\circ}$ and ATDC $1^{\circ}$ according to experimental conditions. It is found that soot emissions with increasing EGR rate are increased, but are decreased as the applied electrical voltage of the non-thermal plasma reactor is elevated at the same engine speed and load. Results also show that CO and $CO_2$ emissions are increased as EGR rate is elevated, and CO emissions are increased, but $CO_2$ emissions are decreased as the applied electrical voltage of the non-thermal plasma reactor is elevated at the same engine speed and load.

커먼레일 디젤엔진의 인젝터 클리닝이 배기가스에 미치는 영향에 관한 연구 (Study of the effects of injector cleaning on the exhaust gases in a common rail diesel engine)

  • 조홍현;김태중
    • 한국산학기술학회논문지
    • /
    • 제15권10호
    • /
    • pp.5980-5987
    • /
    • 2014
  • 디젤엔진의 사용은 루돌프 디젤에 의하여 발명된 이후 산업의 발달을 이끌어가는 중추적인 역할을 하고 있다. 2013년 기준으로 국내의 디젤엔진의 차량은 7,395,739대이다. 디젤엔진에서의 인젝터는 엔진의 구동에 직접적인 역활을 수행하기 때문에 성능향상에 대한 연구는 지속적으로 이루어지고 있다. 본 연구는 운행 중인 디젤차량의 매연의 농도와 인젝터 클리닝 전 후의 관계를 비교분석하기 위하여 인젝터 클리닝 전 후의 매연의 농도를 KD147 모드("운행차 수시점검 및 정기검사의 배출허용기준")로 측정하여 인젝터 클리닝이 매연 저감에 미치는 영향에 대하여 실험적으로 고찰하였다. 실험결과 인젝터 클리닝 후의 매연의 농도가 20% 이상 감소하는 것을 확인하였으며 매연의 농도의 감소율은 매연의 발생량이 클수록 증가하는 것으로 나타났다.

CNG/Diesel 이종연료용 엔진의 성능 및 배출가스 특성에 대한 연구 (Study on Performance and Emission Characteristics of CNG/Diesel Dual-Fuel Engine)

  • 임옥택
    • 대한기계학회논문집B
    • /
    • 제35권9호
    • /
    • pp.869-874
    • /
    • 2011
  • CNG/diesel dual-fuel 엔진은 CNG 를 주 연료로 사용하고 소량의 디젤을 착화제로서 실린더 내에 분사한다. 본 연구에서는 기존의 디젤엔진을 커먼레일직접분사(CRDI)를 통하여 고압으로 디젤을 분사하고, 예혼합을 위하여 CNG 를 흡기포트에 분사하는 CNG/diesel dual-fuel 엔진으로 개조하였다. CNG/diesel dualfuel engine 은 기존의 디젤엔진과 동등한 수준의 토크 및 출력성능을 나타내었다. 또한, CNG 대체율은 CNG/diesel dual-fuel 엔진의 전체 운전영역에 대하여 89% 이상을 만족시켰다. Dual-fuel 엔진의 PM 배출농도는 디젤엔진보다 94% 더 낮게 나타났지만, NOx 배출농도는 더 높게 나타났다.

직분식 커먼레일 디젤엔진의 피에조 인젝터와 솔레노이드 인젝터의 연료분사율 추정 (A Study on the Injection Rate Observer of the Piezo-actuated and Solenoid-operated Injectors for CRDI Diesel Engines)

  • 사종성;정남훈;선우명호
    • 한국정밀공학회지
    • /
    • 제24권9호
    • /
    • pp.52-59
    • /
    • 2007
  • Fuel injection system greatly affects the performance of a direct injection diesel engine. A common rail injection system was introduced to satisfy the stringent emission standards, low fuel consumption, and low noise in recent years. The performance of a common-rail fuel injection system is strongly influenced by the injector characteristics. The common rail injector has evolved in order to improve its injection performance. The piezo-actuated injector is more suitable for common rail injection system due to its fast response and is expected to replace current solenoid-operated injector. In this study, nonlinear mathematical models are proposed for the solenoid-operated and the piezo-actuated injectors for control applications. Based on these models, the injection rate, which is one of the most important factors for the injection characteristics, is estimated using sliding mode observer. The simulation results and the experimental data show that the proposed sliding mode observers can effectively estimate the injection timing and the injection rate for both common-rail injectors.

상용 CRDI 디젤기관에서 바이오디젤유 20% 적용시 내구시험에 따른 배기배출물 특성 (The Characteristics of Exhaust Emissions by Durability Test with Biodiesel Fuel (20%) in a Commercial CRDI Diesel Engine)

  • 최승훈;오영택
    • Journal of Biosystems Engineering
    • /
    • 제33권6호
    • /
    • pp.379-383
    • /
    • 2008
  • A CRDI diesel engine used to commercial vehicle was fueled with diesel fuel and 20% biodiesel blended fuel (BDF 20%) and tested at the Seoul-10 mode for 150 hours. Engine dynamometer testing was completed at regularly scheduled intervals to monitor the engine performance and exhaust emissions. To check the engine parts (valve, injector), the engine was inspected after 150 hours running test. It was concluded that there was no unusual deterioration of the engine, or the changes in engine power (below 1.9%), smoke (below 4.1%), NOx (below 3.7%) and durability characteristics in spite of operation of 150 hours run with BDF 20%. The difference of kinetic viscosity for engine oil (before and after durability testing) was below 0.19% at $100^{\circ}C$.

축압식 고압 연료분사펌프 시스템 특성 해석 (Characteristics of a High Pressure Accumulator Type Fuel Injection System)

  • 박석범;구자예
    • 대한기계학회논문집B
    • /
    • 제22권8호
    • /
    • pp.1101-1110
    • /
    • 1998
  • Computational investigation was conducted to examine the performance of a high pressure common-rail fuel injection system which is used to power a passenger car direct injection (Dl) diesel engine. The pipe flows were modeled by one dimensional wave equation and solved by implicit FDM Each volume of injector was considered as chambers with orifice nozzle in connections. These simulation results were compared with the experimental data of Ganser Hydromag. The comparison of needle life and rate of injection between simulation data and experimental data showed quite a good agreement Different shape of injection rate can be made by adjusting the size of inlet orifice and exit orifice in the piston chamber The pilot injection was accomplished by adjusting command signal.

커먼레일용 연료분사 인젝터의 설계변수에 대한 민감도 분석 (Sensitivity Analysis on Design Parameters of the Fuel Injector for CRDI Engines)

  • 장주섭;윤영환
    • 한국자동차공학회논문집
    • /
    • 제17권5호
    • /
    • pp.107-114
    • /
    • 2009
  • A Common-Rail Direct Injection (CRDI) system for high speed diesel engines was developed to meet reductions of noise and vibration, emission regulations. High pressure in the common rail with electric control allows the fuel quantity and injection timing to be optimized and controlled throughout a wide range of engine velocity and load conditions. In this study, CRDI system analysis model which includes fuel and mechanical systems was developed using commercial software, AMESim in order to predict characteristics for various fuel injection components. The parameter sensitivity analysis such as throttle size, injection rate, plunger displacement, supply pressure of fuel injection for system design are carried out.

DME와 디젤 단기통 엔진의 연소 및 배출가스 특성에 관한 연구 (A Study on the Combustion and Exhaust Gas Characteristics of Single Cylinder Engine for DME and Diesel)

  • 김현철;강우;김병수;박상훈;정재우;박종호
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.80-89
    • /
    • 2004
  • In order to confront the increasing air pollution and the tightening emission restrictions, this research developed a diesel engine using DME, the advanced smoke-free alternative fuel. By numerical analysis, flow field, spray, and combustion phenomenon of the DME engine was presented. Using an experimental method, the configuration of the fuel supply system and operation/power performance was tested with the current plunger pump. Most emission performance, especially smoke performance was significantly improved. The possibility of conversion from the current diesel engine into the DME engine was affirmed in this research. However, it was found that the increase of engine RPM and fuel amount need to be properly adjusted through matching the characteristics of fuel and injector for further improvement.