• Title/Summary/Keyword: Commercial complex

Search Result 700, Processing Time 0.026 seconds

Flow comparison between Stenosed Coronary and Abdominal Arteries (협착된 관상동맥과 복부 대동맥의 유동 특성 비교)

  • Kim, M.C.;Lee, C.S.;Kim, C.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.585-590
    • /
    • 2001
  • The hemodynamic characteristics were compared using commercial CFD code for the stenosed coronary and abdominal arteries. Numerical calculations were carried out in the axisymmetric arteries over the stenotic diameter ratios ranging from 0.25 to 0.875 (6 cases) employing the typical physiological flow conditions. In case of the coronary artery, there was only one recirculation zone observed distal to the stenosis throat during the major portion of the period. However, in case of the abdominal aorta, there were complex recirculation regions found proximal and distal to stenosis throat. For both models, the wall shear stresses(WSS) increased sharply in the converging stenosis, reaching a peak just upstream of the throat, and became negative or low values in the post-stenotic recirculation region. As the results, the oscillatory shear index(OSI) was abruptly increased at the stenosis throat. For the coronary stenosis model, the second peak in the OSI was observed distal to the stenosis. The distance between the first peak and the second peak was increased as the degree of the stenosis was raised. On the orther hand, the abdominal stenosis model showed a complex oscillatory behavior in the OSI index and did not showed such a strong second peak. As the degree of stenosis was increased, recirculation regions of the both arteries were extended much longer and flow pattern became more complex.

  • PDF

Automated Mold Design to Optimize Multi-Quality Characteristics in Injection Molded Parts Based on the Utility Theory and Modified Complex Method (효용이론과 수정콤플렉스법에 기초한 사출 성형품의 다특성 최적화를 위한 자동 금형 설계)

  • Park, Byung-H
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.210-221
    • /
    • 2000
  • Plastic mold designers and frequently faced with optimizing multi-quality issues in injection molded parts. These issues are usually in conflict with each other and thus tradeoff needs to be made to reach a final compromised solution. in this study an automated injection molding design methodology has been developed to optimize multi-quality characteristics of injection molded parts. The features of the proposed methodology are as follows : first utility theory is applied to transform the original multi-objective problem into single-objective problem. Second is an implementation of a direct search-based injection molding optimization procedure with automated consideration of robustness against process variation. The modified complex method is used as a general optimization tool in this study. The developed methodology was applied to an actual mold design and the results showed that the methodology was useful through the CAE simulation using a commercial injection molding software package. Applied to production this study will be of immense value to companies in reducing the product development time and enhancing the product quality.

  • PDF

Numerical Analysis Method for the Flow Analysis in the Engine Cylinder (엔진실린더내의 유동해석을 위한 수치해석방법)

  • Choi J. W.;Lee Y. H.;Park C. K.
    • Journal of computational fluids engineering
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • In general, FDM(finite difference method) and FVM(finite volume method) are used for analyzing the fluid flow numerically. However it is difficult to apply them to problems involving complex geometries, multi-connected domains, and complex boundary conditions. On the contrary, FEM(finite element method) with coordinates transformation for the unstructured grid is effective for the complex geometries. Most of previous studies have used commercial codes such as KIVA or STAR-CD for the flow analyses in the engine cylinder, and these codes are mostly based on the FVM. In the present study, using the FEM for three-dimensional, unsteady, and incompressible Navier-Stokes equation, the velocity and pressure fields in the engine cylinder have been numerically analyzed. As a numerical algorithm, 4-step time-splitting method is used and ALE(arbitrary Lagrangian Eulerian) method is adopted for moving grids. In the Piston-Cylinder, the calculated results show good agreement in comparison with those by the FVM and the experimental results by the LDA.

  • PDF

Large-scale Synthesis of Uniform-sized Nanoparticles for Multifunctional Medical Applications

  • Hyeon, Taeg-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.1-1
    • /
    • 2011
  • We developed a new generalized synthetic procedure, called as "heat-up process," to produce uniform-sized nanocrystals of many transition metals and oxides without a size selection process. We were able to synthesize uniform magnetite nanocrystals as much as 1 kilogram-scale from the thermolysis of Fe-oleate complex. Clever combination of different nanoscale materials will lead to the development of multifunctional nano-biomedical platforms for simultaneous targeted delivery, fast diagnosis, and efficient therapy. In this presentation, I would like to present some of our group's recent results on the designed fabrication of multifunctional nanostructured materials based on uniform-sized magnetite nanoparticles and their medical applications. Uniform ultrasmall iron oxide nanoparticles of <3 nm were synthesized by thermal decomposition of iron-oleate complex in the presence of oleyl alcohol. These ultrasmall iron oxide nanoparticles exhibited good T1 contrast effect. In in vivo T1 weighted blood pool magnetic resonance imaging (MRI), iron oxide nanoparticles showed longer circulation time than commercial gadolinium complex, enabling high resolution imaging. We used 80 nm-sized ferrimagnetic iron oxide nanocrystals for T2 MRI contrast agent for tracking transplanted pancreatic islet cells and single-cell MR imaging. We reported on the fabrication of monodisperse magnetite nanoparticles immobilized with uniform pore-sized mesoporous silica spheres for simultaneous MRI, fluorescence imaging, and drug delivery. We synthesized hollow magnetite nanocapsules and used them for both the MRI contrast agent and magnetic guided drug delivery vehicle.

  • PDF

Distributed Process of Approximate Shape Optimization Based on the Internet (인터넷 기반 근사 형상최적설계의 분산처리)

  • Lim, O-Kaung;Choi, Eun-Ho;Kim, Woo-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.317-324
    • /
    • 2008
  • Optimum design for general or complex structures are required to the need of many numbers of structural analyses. However, current computational environment with single processor is not capable of generating a high-level efficiency in structural analysis and design process for complex structures. In this paper, a virtual parallel computing system communicated by an internet of personal computers and workstation is constructed. In addition, a routine executing Pro/E, ANSYS and optimization algorithm automatically are adopted in the distributed process technique of sequential approximate optimization for the purpose of enhancing the flexibility of application to general structures. By employing the distributed processing technique during structural analysis using commercial application, total calculation time could be reduced, which will enhance the applicability of the proposed technique to the general complex structures.

Determination of Buprenorphine in Raw Material and Pharmaceutical Products Using Ion-pair Formation

  • Amanlou, Massoud;Khosravian, Peghah;Souri, Effat;Dadrass, Orkideh Ghorban;Dinarvand, Rasoul;Alimorad, Mohammad Massoud;Akbari, Hamid
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.183-187
    • /
    • 2007
  • A simple and sensitive extractive spectrophotometric method has been described for the determination of buprenorphine either in raw material or in pharmaceutical formulations. The developed method is based on the formation of a colored ion-pair complex (1 : 1 drug/dye) of buprenorphine and bromocresol green (BCG) in buffer pH 3 and extracting in chloroform. The extracted complex shows absorbance maxima at 415 nm. Beer's law is obeyed in the concentration range of 1.32-100.81 μ g mL-1. The proposed method has been applied successfully for the determination of drug in commercial sublingual tablets and injectable dosage form. No significant interference was observed from the excipients commonly used as pharmaceutical aids with the assay procedure.

Nonlinear time-varying analysis algorithms for modeling the behavior of complex rigid long-span steel structures during construction processes

  • Tian, Li-Min;Hao, Ji-Ping
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1197-1214
    • /
    • 2015
  • There is a great difference in mechanical behavior between design model one-time loading and step-by-step construction process. This paper presents practical computational methods for simulating the structural behavior of long-span rigid steel structures during construction processes. It introduces the positioning principle of node rectification for installation which is especially suitable for rigid long-span steel structures. Novel improved nonlinear analytical methods, known as element birth and death of node rectification, are introduced based on several calculating methods, as well as a forward iteration of node rectification method. These methods proposed in this paper can solve the problem of element's 'floating' and can be easily incorporated in commercial finite element software. These proposed methods were eventually implemented in the computer simulation and analysis of the main stadium for the Universiade Sports Center during the construction process. The optimum construction scheme of the structure is determined by the improved algorithm and the computational results matched well with the measured values in the project, thus indicating that the novel nonlinear time-varying analysis approach is effective construction simulation of complex rigid long-span steel structures and provides useful reference for future design and construction.

A Study on the Floor Plan Type and the Spatial Composition of Standard Mental Health Centers in Seoul (서울시 기초정신건강증진센터의 평면유형 및 소요공간구성에 관한 연구)

  • Lim, Yen Jung;Chai, Choul Gyun
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.20 no.1
    • /
    • pp.45-55
    • /
    • 2014
  • Purpose: The purpose of this study is to provide data on the basis for architectural planning of floor plan type and spatial composition by analysing standard mental health centers in Seoul. Methods: Data were collected through literature research, field surveys, and expert interviews to 22 standard mental health centers in Seoul. Results: The results of this study could be summarized as follows; Firstly, Mental Health Center is divided into five types according to the location. Location types of mental health center were 'Director type', 'Health center connection type', 'Public facilities connection type', 'Complex center connection type' and 'Commercial Facilities connection type'. Secondly, Depending on the type of management a mental health center is divided into two types. Types are 'Complex type' and 'Independent type'. Average area of 'Complex type' is $192.99m^2$ and 'Independent type' is $266.87m^2$. This difference affects the various spaces. Implications: It is necessary to give and architectural suggestion of mental health center in response to the proposal of the system.

Robust Design for Multiple Quality Attributes in Injection Molded Parts by the TOPSIS and Complex Method (TOPSIS와 콤플렉스법에 의한 사출성형품의 다속성 강건설계)

  • Park, Jong-Cheon;Kim, Gi-Beom;Kim, Gyeong-Mo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.116-123
    • /
    • 2001
  • An automated injection molding design methodology has been developed to optimize multiple quality attributes, which are usually in conflict with each other, in injection molded parts. For the optimization, commercial CAE simulation tools and optimization techniques are integrated into the methodology. To decal with the multiple objective problem the relative closeness computed in TOPSIS(Technique for Order Preference by Similarity to Ideal Solution) is used as a performance measurement index for optimization multiple part defects. To attain robustness against process variation, Taguchi's quadratic loss function is introduced in the TOPSIS. Also, the modified complex method is used as an optimization tool to optimize objective function. The verification of the developed design methodology was carried out on simulation software with an actual model. Applied to production this methodology will be useful to companies in reducing their product development time and enhancing their product quality.

  • PDF

A Study on the Planning Direction for Social Communication in a High-density Residential Environment (고밀 주거환경에서의 사회적 소통을 위한 계획 방향 연구)

  • Lee, Jae-Young;Jeon, Yong-Han
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.1
    • /
    • pp.73-80
    • /
    • 2022
  • The purpose of this study is to present the direction of the plan to transform the residential complex into a space that can provide an open residential environment that can lead to social communication and exchange without being closed to the urban residential environment, especially in the apartment complex environment, which is becoming more dense. As a result of the Openness analysis of the 'Codan Shinonome Canal Court', the overall accessibility was good in terms of space utilization, and the openness was low in terms of the spatial composition, which is a physical environment due to the dense block type. When looking at the overall openness of the Codan Sinonome complex in terms of analysis by block, the corrected openness index (C.O.I) for all six blocks was 0.245, the corrected accessibility index (C.A.I) was 1.447 and the openness composite index (O.C.I) was assessed at 1.692. This was due to the formation of high-density block-type urban dwellings and the introduction of S-shaped streets and the layout of low-rise urban support facilities and commercial facilities. The Codan Sinonome Canal Court, which is considered an "open city residence," quantitatively confirmed that it embodies macro-space structure and human-scale space environment even in high-precision environments.