• Title/Summary/Keyword: Command Filter

Search Result 89, Processing Time 0.029 seconds

Extraction of Optimal Time-Delay in Adaptive Command Shaping Filter for Flexible Manipulator Control (유연한 매니퓰레이터 제어를 위한 적응형 명령성형 필터의 최적 시간지연 값 추출)

  • Park, Joo-Han;Rhim, Sung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.564-572
    • /
    • 2008
  • The performance of the direct adaptive time-delay command shaping filter depends on the select time-delay. In the previously introduced direct adaptive command shaping filter, however, the time-delay value is fixed and only the magnitudes of the impulses are learned. In this paper, the authors introduce a new scheme to adapt the time-delay which is to be used in conjunction with the direct adaptive command shaping for the improved vibration suppression in flexible motion system. In order to formulate the time-delay adaptation scheme, the authors have analyzed the effect of the time-delay value on the performance of the direct adaptive command shaping filter. By modifying the direct adaptation formula based on the analysis result the authors have established a set of equations to adapt the time-delay toward the optimal value. Simulation results show the effectiveness of the proposed time-delay adaptation approach for the improved vibration suppression.

A Target State Estimator Design to Improve the Gun Driving Command (포 구동명령 개선을 위한 표적상태 추정기 설계)

  • Lee, Seok-Jae;Kwak, Hwy-Kuen;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1053-1059
    • /
    • 2007
  • This paper presents a target sate estimator(TSE) with low pass filter for improving the gun driving command. The ballistic computer uses target information such as predicted range, velocity, acceleration of a target to generate the gun command. We adopt the finite impulse response(FIR) filter as our TSE to shorten calculation time for the driving command and due to its inherent stability property. We also introduce a post-processing filter to reduce the high frequency components in the output signal of a TSE which may cause instability of gun driving. The first order low pass filter has been designed based on $H{\infty}$ criteria considering the noise characteristics. To show the validity of the present scheme, simulation results are given for the overall gun driving system including aircraft target information.

Design of Envelope Protection Algorithm for Helicopters (헬리콥터의 비행영역제한 알고리즘 설계)

  • Ko, Joon Soo;Park, Sungsu;Kim, Kyungmok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.2
    • /
    • pp.63-68
    • /
    • 2015
  • This paper presents the algorithm for envelope protection of helicopters. The algorithm consists of two feedback control loops: inner loop and outer loop. As an inner loop control, model following control is designed to meet the ADS-33 handling qualities specification by minimizing the tracking errors between the responses of the actual model and those of the command filter. In order to implement envelope protection, saturation limiter is imposed to command channels in command filter, whose limits are computed corresponding to the envelope limit. Fast model predictive control is designed as an outer loop control to deal with saturation constraints generated by the inner loop envelope protection and also imposed by outer loop envelope protection variables. Simulation results show that the proposed algorithm yields good envelope protection performance.

Adaptation of Time-Belay in Command Shaping Filter for Vibration Suppression in Flexible Motion System (유연체 모션시스템의 진동억제를 위한 명령성형필터의 시간지연 값 학습)

  • Park J.H.;Rhim S.S.;Lee S.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.43-44
    • /
    • 2006
  • The performance of the direct adaptive time-delay filter depends on the select time-delay. In this paper, the authors introduce a new scheme to adapt the time-delay which is to be used in conjunction with the direct adaptive command shaping for the improved vibration suppression in flexible motion system. In order to formulate the time-delay adaptation scheme, the authors have analyzed the effect of the time-delay value on the performance of the direct adaptive command shaping filter. By modifying the direct adaptation formula based on the analysis result the authors have established a set of equations to adapt the time-delay toward the optimal value. Simulation results show the effectiveness of the proposed time-delay adaptation approach for the improved vibration suppression.

  • PDF

Dynamic Control Allocation for Shaping Spacecraft Attitude Control Command

  • Choi, Yoon-Hyuk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.10-20
    • /
    • 2007
  • For spacecraft attitude control, reaction wheel (RW) steering laws with more than three wheels for three-axis attitude control can be derived by using a control allocation (CA) approach.1-2 The CA technique deals with a problem of distributing a given control demand to available sets of actuators.3-4 There are many references for CA with applications to aerospace systems. For spacecraft, the control torque command for three body-fixed reference frames can be constructed by a combination of multiple wheels, usually four-wheel pyramid sets. Multi-wheel configurations can be exploited to satisfy a body-axis control torque requirement while satisfying objectives such as minimum control energy.1-2 In general, the reaction wheel steering laws determine required torque command for each wheel in the form of matrix pseudo-inverse. In general, the attitude control command is generated in the form of a feedback control. The spacecraft body angular rate measured by gyros is used to estimate angular displacement also.⁵ Combination of the body angular rate and attitude parameters such as quaternion and MRPs(Modified Rodrigues Parameters) is typically used in synthesizing the control command which should be produced by RWs.¹ The attitude sensor signals are usually corrupted by noise; gyros tend to contain errors such as drift and random noise. The attitude determination system can estimate such errors, and provide best true signals for feedback control.⁶ Even if the attitude determination system, for instance, sophisticated algorithm such as the EKF(Extended Kalman Filter) algorithm⁶, can eliminate the errors efficiently, it is quite probable that the control command still contains noise sources. The noise and/or other high frequency components in the control command would cause the wheel speed to change in an undesirable manner. The closed-loop system, governed by the feedback control law, is also directly affected by the noise due to imperfect sensor characteristics. The noise components in the sensor signal should be mitigated so that the control command is isolated from the noise effect. This can be done by adding a filter to the sensor output or preventing rapid change in the control command. Dynamic control allocation(DCA), recently studied by Härkegård, is to distribute the control command in the sense of dynamics⁴: the allocation is made over a certain time interval, not a fixed time instant. The dynamic behavior of the control command is taken into account in the course of distributing the control command. Not only the control command requirement, but also variation of the control command over a sampling interval is included in the performance criterion to be optimized. The result is a control command in the form of a finite difference equation over the given time interval.⁴ It results in a filter dynamics by taking the previous control command into account for the synthesis of current control command. Stability of the proposed dynamic control allocation (CA) approach was proved to ensure the control command is bounded at the steady-state. In this study, we extended the results presented in Ref. 4 by adding a two-step dynamic CA term in deriving the control allocation law. Also, the strict equality constraint, between the virtual and actual control inputs, is relaxed in order to construct control command with a smooth profile. The proposed DCA technique is applied to a spacecraft attitude control problem. The sensor noise and/or irregular signals, which are existent in most of spacecraft attitude sensors, can be handled effectively by the proposed approach.

Engineering Qualification Model Development of S-band Receiver for STSAT-3 (과학기술위성 3호 S 대역 수신기 기술인증모델 개발)

  • Lee, Jung-Su;Oh, Seung-Han;Seo, Gyu-Jae;Oh, Chi-Wook;Myung, Noh-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.609-614
    • /
    • 2009
  • The TT&C communication subsystem of STSAT-3 is consisted of communication link to send telemetry data of spacecraft to the ground station and receive command data from ground station. The S-band receiver is used to receive command data from ground station, Engineering Qualification Model of S-band receiver has been designed and manufactured. The Designed S-band Receiver uses a single conversion for a simple frequency conversion, including a DC-DC Converter and EMI Filter. Also, Digital demodulation part designed using FPGA and RS-422 data interface. The performance of S-band Receiver in functional and space environments test satisfies the requirements of STSAT-3.

Satellite orbit determination by E.K.F. and smoothing filter (확장칼만필터와 스무딩필터를 이용한 위성의 궤도결정)

  • 박수홍;최철환;조겸래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.457-462
    • /
    • 1990
  • Lately, at an epock of full-scale satellite ranching plan of Korea, T.T.C (Tracking, Telemetery & Command) is a indispensable part. In this paper, particular attention is given to orbit determination problem of role of T.T.C. Orbit determination, which is applied to Kalman Filter and Smoothing Filter, use the observation data which is given by satellite tracking radar system, and then the simulation is accomplished. As a result, it shows effectiveness.

  • PDF

SPIN-AXIS ATTITUDE DETERMINATION PROGRAM FOR THE GEOSYNCHRONOUS TRANSFER ORBIT SPAECRAFT

  • Lee, Byoung-Sun;Eun, Jong-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.1-16
    • /
    • 1993
  • Three typer of spin-axis attitude determination program for the geosynchronous transfer orbit spacecraft are developed. Deterministic closed-from algorithm, batch least-square algorithm and stabilized Kalman filter algorithm are used for implemetation of three programs. EUROSTAR bus model from British Aerospace is used for attitude sensor modelling. Attitude determinations using three programs are performed for the simulated sensor data according to INMARSAT 2-F1 prelaunch mission analysis.

  • PDF

Design of an Estimator for Servo Systems using Discrete Kalman Filter (이산형 칼만 필터를 이용한 서보 시스템의 추정자 설계)

  • Shin, Doo-Jin;Huh, Uk-Youl
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.8
    • /
    • pp.996-1003
    • /
    • 1999
  • This paper propose a position-speed controller with an estimator which can estimate states and disturbance. The overall control system consists of two parts: the position-speed controller and an estimator. The Kalman filter applied as state-feedback controller is an optimal state estimator applied to a dynamic system that involves random perturbations and gives a linear, unbiased and minimum error variance recursive algorithm to optimally estimate the unknown state. Therefore, we consider the error problem about the servo system modeling and the measurement noise as a stochastic system and implement a optimal state observer, and enhance the estimate performance of position and speed using that. Using two-degree-of freedom(TDOF) conception, we design the command input response and the closed loop characteristics independently. The servo system is to improve the closed loop characteristics without affecting the command imput response. The characteristics of the closed loop system is improved by suppressing disturbance torque effectively with the disturbance observer using a inverse-transfer matrix. Therefore, the performance of overall position-speed controller is enhanced. Finally, the performance of the proposed controller is exemplified by some simulations and by applying the real servo system.

  • PDF