• 제목/요약/키워드: Combustion synthesis process

검색결과 92건 처리시간 0.02초

DME 직접 합성공정 기술개발 (Development of Direct DME Synthesis Process)

  • 모용기;조원준;백영순
    • 한국가스학회지
    • /
    • 제14권3호
    • /
    • pp.41-45
    • /
    • 2010
  • DME(Dimethyl Ether)는 물리적 성질이 LPG와 유사하여 청정하면서 LPG와 잘 섞이고, 세탄가가 디젤연료와 유사하여 디젤을 대체할 수 있는 환경 친화적인 차세대 대체에너지이다. DME는 천연가스, CBM, biomass 등 다양한 원료로부터 제조할 수 있으며 탄소-탄소 직접결합이 없어 연소시 배기가스중에 검댕이나 황산화물이 없다. 한국가스공사에서 개발한 DME 공정은 크게 4개의 section으로 구분할 수 있다. 먼저 합성가스를 제조하는 syngas section 에서는 다양한 합성가스 비율을 제조할 수 있다. 이것은 tri-reforming을 완성하는 과정에서 합성가스 비율을 약 4.0~1.0의 범위로 조절할 수 있다. 두 번째로 $CO_2$ removal section에서 제거되는 $CO_2$는 약 92~99%로서 DME 합성반응기로 유입되는 $CO_2$의 최대 농도는 8%를 넘지 않아야 한다. 세 번째로 DME synthesis section에서 DME 합성 반응기의 반응온도는 높을수록 활성이 좋지만 촉매의 장기 활성을 위해서는 적정한 온도를 유지하는 것이 바람직하다. 마지막으로 DME purification section에서는 99.5%이상의 고순도의 DME를 정제할 수 있다.

고질소 추진물질 합성 연구 (The Study on the Synthesis of Propellant with High Nitrogen Content)

  • 이웅희;김민준;박영철
    • 한국추진공학회지
    • /
    • 제19권3호
    • /
    • pp.96-102
    • /
    • 2015
  • 기존에 사용되고 있는 대부분의 추진물질들은 연소 시 이산화탄소, 염산가스 등의 환경유해 물질을 다량 발생시킨다. 본 연구에서는 이러한 문제점을 개선하기 위한 테트라진 계열의 저탄소 고질소 화합물인 DAAT의 합성공정을 확립하였다. 또한, 문헌에 빠져있는 구체적인 공정법 및 특성 분석 결과를 서술하였다. 그리고 분광분석(NMR, IR)을 통한 DAAT의 구조분석과 열, 충격, 마찰 안정성을 측정하였고, Gaussian 09와 EXPLO5를 이용하여 생성열과 폭발 특성(폭압, 폭속) 등을 계산하였다.

SHS 합성에 의한 몰리브덴계 용사용 복합분말의 제조 (Fabrication of Mo based Thermal Spray Composite Powder by Self- propagating High- temperature Synthesis)

  • 박제신;심건주
    • 한국재료학회지
    • /
    • 제11권9호
    • /
    • pp.763-768
    • /
    • 2001
  • Molybdenum-based thermal spray powder is widely used for coating the moving parts of the internal combustion engines due to its excellent wear resistance. A composite powder of the $Mo_{40}(Al_{1-x}Si_x)_{60}$ system was synthesized using the SHS method. The synthesized bulk was pulverized and specially treated to produce thermal spray powder. It was found that the synthesis reaction consisted of two-steps: the formation of $Al_8/Mo_3$ and the formation of Mo(Al,Si)$_2$. Both the temperature and the rate of the SHS reaction linearly increased with the increase of the value of x in $Mo_{40}(Al_{1-x}Si_x)_{60}$, The temperature and the rate of the reaction were also affected by the compacting density of the specimens, exhibiting the maximum valves at 62% and 60%, respectively. Since spherical shape is advantageous to the thermal spraying process, shape-control of the powder was attempted with PVA as a binding additive, resulting in the successful production of almost perfectly spherical powder of 80 $\mu\textrm{m}$ Ø$(d_{50})$ mean particle size.

  • PDF

BTL(Biomass to Liquid) 공정을 위한 합성가스 공급 시스템 개발 (Development of syngas supplying system for BTL (Biomass to Liquid) process)

  • 김영두;김범종;문지홍;이은도;김광수;양창원;이정우;이시훈;김재호;이상봉
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.223-226
    • /
    • 2012
  • Biomass to Liquid (BTL) is an attractive option for using biomass as an renewable energy. A syngas supplying system has been designed for BTL system, based on the Fischer-Tropsche (FT) process, and long-term operation test was conducted. The syngas supplying system is composed of a fluidized bed gasifier, gas cleaning and compression system, and methanol absorption system. Stable operation of more than hundred hours was achieved with several champaigns. In addition, a pilot scale biomass gasifier has been developed for 1 bbl/day BTL system and its performance was evaluated. Some preliminary results and current status of the development of BTL system will be presented.

  • PDF

Arc melting으로 제조한 금속간화합물 Ni3Al, NiAl 및 TiAl의 미끄럼 마모특성 해석 (Analysis of Sliding Wear Properties for Arc-melted Intermetallic Compounds of Ni3Al, NiAl and TiAl)

  • 이한영;김태준;조용재
    • 대한금속재료학회지
    • /
    • 제47권5호
    • /
    • pp.267-273
    • /
    • 2009
  • Three types of structural intermetallic compounds, $Ni_3Al$, NiAl and TiAl, having each single phase structure without pores were produced by arc-melting process. Their sliding wear properties were investigated against a hardened tool steel. It was shown that the wear of the intermetallic compounds was hardly occurred against the hardened tool steel. TiAl compound showed the best wear resistance among them. In this case, wear was preferentially occurred on the surface of the hardened tool steel of the mating material which has higher hardness. It could be found that the wear mode on intermetallics without pores by arc-melting process was different from that on its porous layer coated on steel by combustion synthesis.

초음파분무 연소법에 의한 나노결정 ZnO 초미분체 제조 (Preparation of Nanocrystalline ZnO Ultrafine Powder Using Ultrasonic Spraying Combustion Method)

  • 김광수;황두선;구숙경;이강;전치중;이은구;김선재
    • 한국재료학회지
    • /
    • 제12권10호
    • /
    • pp.784-790
    • /
    • 2002
  • For mass product of nanocrystalline ZnO ultrafine powders, self-sustaining combustion process(SCP) and ultrasonic spray combustion method(USCM) were applied at the same time. Ultrasonic spray gun was attached on top of the vertical type furnace. The droplet was sprayed into reaction zone of the furnace to form SCP which produces spherical shape with soft agglomerate crystalline ZnO particles. To characterize formed particles, fuel and oxidizing agent for SCP were used glycine and zinc nitrate or zinc hydroxide. Respectively, with changing combustion temperature and mixture ratio of oxidizing agent and fuel, the best ultrasonic spray conditions were obtained. To observe ultrasonic spray effect, two types of powder synthesis processes were compared. One was directly sprayed into furnace from the precursor solution (Type A), the other directly was heated on the hot plate without using spray gun (Type B). Powder obtained by type A was porous sponge shape with heavy agglomeration, but powder obtained using type B was finer primary particle size, spherical shape with weak agglomeration and bigger value of specific surface area. 9/ This can be due to much lower reaction temperature of type B at ignition time than type A. Synthesized nanocrystalline ZnO powders at the best ultrasonic spray conditions have primary particle size in range 20~30nm and specific surface area is about 20m$^2$/g.

알루미늄 용탕에서 Al-TiO2-C의 연소합성반응에 의한 in-situ Al/TiC 복합재료의 제조에 미치는 공정변수의 영향 (Effects of Processing Parameters on the Fabrication of in-situ Al/TiC Composites by Thermally Activated Combustion Reaction Process in an Aluminium Melt using Al-TiO2-C Powder Mixtures)

  • 김화정;이정무;조영희;김종진;김수현;이재철
    • 대한금속재료학회지
    • /
    • 제50권9호
    • /
    • pp.677-684
    • /
    • 2012
  • A feasible way to fabricate in-situ Al/TiC composites was investigated. An elemental mixture of $Al-TiO_2-C$ pellet was directly added into an Al melt at $800-920^{\circ}C$ to form TiC by self-combustion reaction. The addition of CuO initiates the self-combustion reaction to form TiC in $1-2{\mu}m$ at the melt temperature above $850^{\circ}C$. Besides the CuO addition, a diluent element of excess Al plays a significant role in the TiC formation by forming a precursor phase, $Al_3Ti$. Processing parameters such as CuO content, the amount of excess Al and the melt temperature, have affected the combustion reaction and formation of TiC, and their influences on the microstructures of in-situ Al/TiC composites are examined.

자전연소합성법으로 제조한 Zr계 AB2-x Mx 금속수소화물의 수소저장특성 (Hydrogen Storage Properties of Zr-Based AB2-x Mx Metal Hydrides Made by Hydriding Combustion Synthesis (HCS))

  • 허태홍;한정섭;김진호
    • 대한금속재료학회지
    • /
    • 제50권3호
    • /
    • pp.256-262
    • /
    • 2012
  • This study investigated the hydrogen storage properties of Zr-Based $AB_{2-x}M_x$ metal hybride made by HCS (Hydriding Combustion Synthesis). The materials were prepared by HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm, HCS 80 wt% $AB_2$-20 wt% Mg and pure Zr-Based $AB_2$, These materials were activated at 298 K under 20 bar. Both HCS 80 wt% $AB_2$-20 wt% Mg and HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm were absorbed within 1 minute. In the case of the $AB_2$, it was perfectly absorbed within 6 minutes. Then, the materials were evaluated to obtain P-C-T (Pressure-Composition-Temperature) curves at 298K. As a result, the hydrogen storage capacity of HCS 80 wt% $AB_2$-20 wt% Mg, HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm and pure Zr-Based $AB_2$ were determined to be 1.2, 1.6 and 1.74 wt%, respectively. The activation energy and rate controlling step were calculated by the Johnson-Mehl Avrami equation. The activation energies of HCS 80 wt% $AB_2$-20 wt% Mg, HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm and pure Zr-Based $AB_2$ were 26.91, 20.45, and 60.41 kJ/mol, respectively. Also, the values of ${\eta}$ in the Johnson-Mehl Avrami equation for HCS 80 wt% $AB_2$-20 wt% Mg, HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm and pure Zr-Based $AB_2$ are 0.60, 0.51, and 0.44. So, the rate controlling steps which indicate hydrogen storage mechanism are an one dimensional diffusion process.

고온 자전 합성시 반응열 제어가 TiAl 미세 조직에 미치는 영향에 관한 연구 (The Effct of SHS Reaction Heat Control on the Microstructure of TiAl)

  • 문종태;염종택;신봉문;김용석;이용호
    • 한국재료학회지
    • /
    • 제5권7호
    • /
    • pp.869-879
    • /
    • 1995
  • TiAi intermetallic compound has been extensively studied for possible high temperature structural applications because of its high specific strength at high temperature, high creep resistance, and good oxidation resistance at elevated temperatures. In addition to its good properties, an economic manufacturing routes should be developed for this material to be used more extensively. One of the promising route in manufacturing TiAl intermetallics is the Self-propagating High-temperature Synthesis (SHS) method. Thus in this study, an attempt was made to study the mechanism of the SHS process in TiAl synthesis. The composition of the sample was Ti-(45, 50, 53)at% Al and the microstuctures of the products were analyzed using optical microscope and scanning electron microscope. When the phases formed at the main SHS reaction of whicyh combustion temperature is higher than the melting temperature of aluminum were identified as TiAl and Ti$_3$Al ; Ti$_3$Al cores surrounded by TiAl phase. In order to increase the combustion temperature, carbon was added 5 and 10at.%. When the carbon content was 10at.%, the heat of the reaction was large enough to melt the phase formed and that is consistent with the theoretical calculation results of the adiabatic temperature. The combution temperatue, which was measured by a computer data acquisition system, increased with the carbon content. The phases formed from the reaction involving the carbon added were indentified as TiAl and Ti$_2$AlC using XRD. The vickers hardness of the reaction product increased with the carbon content.

  • PDF

친환경 산화제 HNF 합성 및 결정화 연구 (Synthesis and Crystallization of Hydrazinium Nitroformate(HNF) as Eco-friendly Oxidizer)

  • 김진아;김민준;민병선
    • 한국추진공학회지
    • /
    • 제19권4호
    • /
    • pp.69-76
    • /
    • 2015
  • 최근 기존 화약과 추진제의 환경 지속성은 에너지 물질 분야에서 중요한 이슈로 부각되고 있다. 예를 들어 고체추진제의 산화제인 ammonium perchlorate(AP)는 염산과 같은 독성 가스와 대기 오염을 발생시켜 환경적 문제를 야기한다. 산화제 중 hydrazinium nitroformate(HNF)는 높은 밀도와 압력 지수를 가지고 있으며, 연속 가변형 추력기 시스템(DACS)에서 연소하는 동안 소규모의 연기를 배출하는 성질을 가지고 있기 때문에 환경 친화적으로 효과적인 후보 물질이다. 본 발표에서는 다양한 조건을 통하여 합성법을 적립하였으며, 결정화 과정에 필수적인 자료인 용해도 연구에 대해 수행하였다. 또한 결정화 방법 중 냉각법, 침전법, 초음파를 이용한 연구도 수행하였다.