DOI QR코드

DOI QR Code

Hydrogen Storage Properties of Zr-Based AB2-x Mx Metal Hydrides Made by Hydriding Combustion Synthesis (HCS)

자전연소합성법으로 제조한 Zr계 AB2-x Mx 금속수소화물의 수소저장특성

  • Hur, Tae Hong (Department of Metallurgical Engineering, Dong-A University) ;
  • Han, Jeong Seb (Department of Metallurgical Engineering, Dong-A University) ;
  • Kim, Jin Ho (Korea Institute of Ceramic Engineering & Technology)
  • 허태홍 (동아대학교 대학원 신소재공학과) ;
  • 한정섭 (동아대학교 대학원 신소재공학과) ;
  • 김진호 (한국세라믹 기술원)
  • Received : 2011.09.27
  • Published : 2012.03.25

Abstract

This study investigated the hydrogen storage properties of Zr-Based $AB_{2-x}M_x$ metal hybride made by HCS (Hydriding Combustion Synthesis). The materials were prepared by HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm, HCS 80 wt% $AB_2$-20 wt% Mg and pure Zr-Based $AB_2$, These materials were activated at 298 K under 20 bar. Both HCS 80 wt% $AB_2$-20 wt% Mg and HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm were absorbed within 1 minute. In the case of the $AB_2$, it was perfectly absorbed within 6 minutes. Then, the materials were evaluated to obtain P-C-T (Pressure-Composition-Temperature) curves at 298K. As a result, the hydrogen storage capacity of HCS 80 wt% $AB_2$-20 wt% Mg, HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm and pure Zr-Based $AB_2$ were determined to be 1.2, 1.6 and 1.74 wt%, respectively. The activation energy and rate controlling step were calculated by the Johnson-Mehl Avrami equation. The activation energies of HCS 80 wt% $AB_2$-20 wt% Mg, HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm and pure Zr-Based $AB_2$ were 26.91, 20.45, and 60.41 kJ/mol, respectively. Also, the values of ${\eta}$ in the Johnson-Mehl Avrami equation for HCS 80 wt% $AB_2$-20 wt% Mg, HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm and pure Zr-Based $AB_2$ are 0.60, 0.51, and 0.44. So, the rate controlling steps which indicate hydrogen storage mechanism are an one dimensional diffusion process.

Keywords

Acknowledgement

Supported by : 동아대학교

References

  1. J. L. Bobet and B. Darriet, Int. J. Hydrogen Energ. 25, 767 (2000). https://doi.org/10.1016/S0360-3199(99)00101-9
  2. R. M. V. Essen and K. H. J. Buschow, Mater. Res. Bull. 15, 1149 (1980). https://doi.org/10.1016/0025-5408(80)90079-3
  3. N. Nishimiya, Mater. Res. Bull. 21, 1025 (1986). https://doi.org/10.1016/0025-5408(86)90217-5
  4. D. G. Ivey, R. I. Chittim, K. J. Chittim, and D. O. Northwood, J. Mater. Energ. Sys. 3, 3 (1981).
  5. M. Pozzo and D. Alfe, Int. J. Hydrogen Energ. 34, 1922 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.109
  6. A. Zaluska, L. Zaluski, and J. O. S. Olsen, J. Alloys Compd. 228, 217 (1999).
  7. M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, and O. Gutfleisch, Scr. Mater. 56, 841 (2007). https://doi.org/10.1016/j.scriptamat.2007.01.003
  8. G. E. Fernandez, D. Rodriguez, and G. Meyer, Int. J. Hydrogen Energ. 23, 1193 (1998). https://doi.org/10.1016/S0360-3199(98)00002-0
  9. W. A. Johnson and R. F. Mehl, Trans AIME 135, 416 (1939).
  10. M. Avrami, J. Chem. Phys. 7, 1103 (1939). https://doi.org/10.1063/1.1750380
  11. S. Vyazovkin and C. A. Wight, Int. Rev. Phys. Chem. 17, 407 (1998). https://doi.org/10.1080/014423598230108
  12. L. Li, T. Akiyama, and J. Yagi, Int. J. Hydrogen Energ. 26, 1035 (2001). https://doi.org/10.1016/S0360-3199(01)00042-8
  13. D. Liu, Y. Zhu, and L. Li, Int. J. Hydrogen Energ. 32, 2417 (2007). https://doi.org/10.1016/j.ijhydene.2006.11.021
  14. R. Wakabayashi, S. Sasaki, I. Saita, M. Sato, H. Uesugi, and T. Akiyama, J. Alloys Compd. 480, 592 (2009). https://doi.org/10.1016/j.jallcom.2009.02.008
  15. J. S. Han and K. D. Park, Korean J. Met. Mater. 48, 1123 (2010).
  16. J. L. Bobet, B. Chevalier, M. Y. Song, B. Darriet, and J. Etourneau, J. Alloys Compd. 336, 292 (2002). https://doi.org/10.1016/S0925-8388(01)01883-7
  17. J. L. Bobet, F. J. Castro, and B. Chevalier, Scr. Mater. 52, 33 (2005). https://doi.org/10.1016/j.scriptamat.2004.09.001
  18. P. Wang, H. F. Zhang, B. Z. Ding, and Z. Q. Hu, Acta Mater. 49, 921 (2001). https://doi.org/10.1016/S1359-6454(00)00359-1
  19. D. Sun, F. Gingl, H. Enoki, D. K. Ross, and E. Akiba, Acta Mater. 48, 2363 (2000). https://doi.org/10.1016/S1359-6454(00)00021-5
  20. Z. G. Huang, Z. P. Guo, A. Calka, D. Wexler, C. Lukey, and H. K Liu, J. Alloys Compd. 422, 299 (2006). https://doi.org/10.1016/j.jallcom.2005.11.074
  21. M. Dornheim, N. Eigen, G. Barkhordarian, T. Klassen, and R. Bormann, Adv. Eng. Mater. 8, 377 (2006). https://doi.org/10.1002/adem.200600018
  22. T. R. Jensen, A. Andreasen, T. Vegge, J. W. Andreasen, and K. Stahl, Int. J. Hydrogen Energ. 31, 2052 (2006). https://doi.org/10.1016/j.ijhydene.2006.02.004
  23. E. David, J. Achievements Mater. Manuf. Eng. 20, 87 (2007).
  24. M. T. Hagstrm, S. N. Klyamkinb, and P. D. Lunda, J. Alloys Compd. 293, 67 (1999).
  25. H. K. Bimbaum, M. L. Grossbech, and M. Amano, J. Less-Common Met. 89, 287 (1983). https://doi.org/10.1016/0022-5088(83)90282-5
  26. A. Andreasen, Int. J. Hydrogen Energ. 33, 7489 (2008) https://doi.org/10.1016/j.ijhydene.2008.09.095
  27. X. Y. Cui, Q. Li, K. C. Chou, S. L. Chen, G. W. Lin, and K. D. Xu, Intermetallics 16, 662 (2008). https://doi.org/10.1016/j.intermet.2008.02.009
  28. R. W. Cahn, P. Hassen, and E. J. Karmer Editors, Mater. Sci. Technol. 3, [ch. 13] (1994).