Browse > Article
http://dx.doi.org/10.3365/KJMM.2012.50.3.256

Hydrogen Storage Properties of Zr-Based AB2-x Mx Metal Hydrides Made by Hydriding Combustion Synthesis (HCS)  

Hur, Tae Hong (Department of Metallurgical Engineering, Dong-A University)
Han, Jeong Seb (Department of Metallurgical Engineering, Dong-A University)
Kim, Jin Ho (Korea Institute of Ceramic Engineering & Technology)
Publication Information
Korean Journal of Metals and Materials / v.50, no.3, 2012 , pp. 256-262 More about this Journal
Abstract
This study investigated the hydrogen storage properties of Zr-Based $AB_{2-x}M_x$ metal hybride made by HCS (Hydriding Combustion Synthesis). The materials were prepared by HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm, HCS 80 wt% $AB_2$-20 wt% Mg and pure Zr-Based $AB_2$, These materials were activated at 298 K under 20 bar. Both HCS 80 wt% $AB_2$-20 wt% Mg and HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm were absorbed within 1 minute. In the case of the $AB_2$, it was perfectly absorbed within 6 minutes. Then, the materials were evaluated to obtain P-C-T (Pressure-Composition-Temperature) curves at 298K. As a result, the hydrogen storage capacity of HCS 80 wt% $AB_2$-20 wt% Mg, HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm and pure Zr-Based $AB_2$ were determined to be 1.2, 1.6 and 1.74 wt%, respectively. The activation energy and rate controlling step were calculated by the Johnson-Mehl Avrami equation. The activation energies of HCS 80 wt% $AB_2$-20 wt% Mg, HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm and pure Zr-Based $AB_2$ were 26.91, 20.45, and 60.41 kJ/mol, respectively. Also, the values of ${\eta}$ in the Johnson-Mehl Avrami equation for HCS 80 wt% $AB_2$-20 wt% Mg, HCS 80 wt% $AB_2$-15 wt% Mg-5 wt% Mm and pure Zr-Based $AB_2$ are 0.60, 0.51, and 0.44. So, the rate controlling steps which indicate hydrogen storage mechanism are an one dimensional diffusion process.
Keywords
energy storage materials; powder processing; hydrogen; activation analysis; hydriding combustion synthesis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. L. Bobet and B. Darriet, Int. J. Hydrogen Energ. 25, 767 (2000).   DOI   ScienceOn
2 R. M. V. Essen and K. H. J. Buschow, Mater. Res. Bull. 15, 1149 (1980).   DOI   ScienceOn
3 N. Nishimiya, Mater. Res. Bull. 21, 1025 (1986).   DOI   ScienceOn
4 D. G. Ivey, R. I. Chittim, K. J. Chittim, and D. O. Northwood, J. Mater. Energ. Sys. 3, 3 (1981).
5 M. Pozzo and D. Alfe, Int. J. Hydrogen Energ. 34, 1922 (2009).   DOI   ScienceOn
6 A. Zaluska, L. Zaluski, and J. O. S. Olsen, J. Alloys Compd. 228, 217 (1999).
7 M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, and O. Gutfleisch, Scr. Mater. 56, 841 (2007).   DOI   ScienceOn
8 G. E. Fernandez, D. Rodriguez, and G. Meyer, Int. J. Hydrogen Energ. 23, 1193 (1998).   DOI   ScienceOn
9 W. A. Johnson and R. F. Mehl, Trans AIME 135, 416 (1939).
10 M. Avrami, J. Chem. Phys. 7, 1103 (1939).   DOI
11 S. Vyazovkin and C. A. Wight, Int. Rev. Phys. Chem. 17, 407 (1998).   DOI   ScienceOn
12 L. Li, T. Akiyama, and J. Yagi, Int. J. Hydrogen Energ. 26, 1035 (2001).   DOI   ScienceOn
13 D. Liu, Y. Zhu, and L. Li, Int. J. Hydrogen Energ. 32, 2417 (2007).   DOI   ScienceOn
14 R. Wakabayashi, S. Sasaki, I. Saita, M. Sato, H. Uesugi, and T. Akiyama, J. Alloys Compd. 480, 592 (2009).   DOI   ScienceOn
15 J. S. Han and K. D. Park, Korean J. Met. Mater. 48, 1123 (2010).
16 J. L. Bobet, B. Chevalier, M. Y. Song, B. Darriet, and J. Etourneau, J. Alloys Compd. 336, 292 (2002).   DOI   ScienceOn
17 J. L. Bobet, F. J. Castro, and B. Chevalier, Scr. Mater. 52, 33 (2005).   DOI   ScienceOn
18 P. Wang, H. F. Zhang, B. Z. Ding, and Z. Q. Hu, Acta Mater. 49, 921 (2001).   DOI   ScienceOn
19 D. Sun, F. Gingl, H. Enoki, D. K. Ross, and E. Akiba, Acta Mater. 48, 2363 (2000).   DOI   ScienceOn
20 Z. G. Huang, Z. P. Guo, A. Calka, D. Wexler, C. Lukey, and H. K Liu, J. Alloys Compd. 422, 299 (2006).   DOI   ScienceOn
21 M. Dornheim, N. Eigen, G. Barkhordarian, T. Klassen, and R. Bormann, Adv. Eng. Mater. 8, 377 (2006).   DOI   ScienceOn
22 T. R. Jensen, A. Andreasen, T. Vegge, J. W. Andreasen, and K. Stahl, Int. J. Hydrogen Energ. 31, 2052 (2006).   DOI   ScienceOn
23 E. David, J. Achievements Mater. Manuf. Eng. 20, 87 (2007).
24 M. T. Hagstrm, S. N. Klyamkinb, and P. D. Lunda, J. Alloys Compd. 293, 67 (1999).
25 H. K. Bimbaum, M. L. Grossbech, and M. Amano, J. Less-Common Met. 89, 287 (1983).   DOI   ScienceOn
26 A. Andreasen, Int. J. Hydrogen Energ. 33, 7489 (2008)   DOI   ScienceOn
27 X. Y. Cui, Q. Li, K. C. Chou, S. L. Chen, G. W. Lin, and K. D. Xu, Intermetallics 16, 662 (2008).   DOI   ScienceOn
28 R. W. Cahn, P. Hassen, and E. J. Karmer Editors, Mater. Sci. Technol. 3, [ch. 13] (1994).