DOI QR코드

DOI QR Code

Effects of Processing Parameters on the Fabrication of in-situ Al/TiC Composites by Thermally Activated Combustion Reaction Process in an Aluminium Melt using Al-TiO2-C Powder Mixtures

알루미늄 용탕에서 Al-TiO2-C의 연소합성반응에 의한 in-situ Al/TiC 복합재료의 제조에 미치는 공정변수의 영향

  • Kim, Hwa-Jung (Light Metals Division, Korea Institute of Materials Science) ;
  • Lee, Jung-Moo (Light Metals Division, Korea Institute of Materials Science) ;
  • Cho, Young-Hee (Light Metals Division, Korea Institute of Materials Science) ;
  • Kim, Jong-Jin (Light Metals Division, Korea Institute of Materials Science) ;
  • Kim, Su-Hyeon (Light Metals Division, Korea Institute of Materials Science) ;
  • Lee, Jae-Chul (Department of Materials Science and Engineering, Korea University)
  • 김화정 (한국기계연구원 부설재료연구소 경량금속연구단) ;
  • 이정무 (한국기계연구원 부설재료연구소 경량금속연구단) ;
  • 조영희 (한국기계연구원 부설재료연구소 경량금속연구단) ;
  • 김종진 (한국기계연구원 부설재료연구소 경량금속연구단) ;
  • 김수현 (한국기계연구원 부설재료연구소 경량금속연구단) ;
  • 이재철 (고려대학교 신소재공학부)
  • Received : 2012.03.15
  • Published : 2012.09.25

Abstract

A feasible way to fabricate in-situ Al/TiC composites was investigated. An elemental mixture of $Al-TiO_2-C$ pellet was directly added into an Al melt at $800-920^{\circ}C$ to form TiC by self-combustion reaction. The addition of CuO initiates the self-combustion reaction to form TiC in $1-2{\mu}m$ at the melt temperature above $850^{\circ}C$. Besides the CuO addition, a diluent element of excess Al plays a significant role in the TiC formation by forming a precursor phase, $Al_3Ti$. Processing parameters such as CuO content, the amount of excess Al and the melt temperature, have affected the combustion reaction and formation of TiC, and their influences on the microstructures of in-situ Al/TiC composites are examined.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. J. M. Lee, S. B. Kang, T. Sato, H. Tezuka, and A. Kamio, Mater. Trans. JIM, 43, 1638 (2002). https://doi.org/10.2320/matertrans.43.1638
  2. M. Galano, F. Audebert, I. C. Stone, and B. Cantor, Acta Mater. 57, 5107 (2009). https://doi.org/10.1016/j.actamat.2009.07.011
  3. P. Li, E. G. Kandalova, and V. I Nikitin, Mater. Lett. 59, 2545 (2005). https://doi.org/10.1016/j.matlet.2005.03.043
  4. T. Nukami and M. C. Flemings, Metall. Mater. Trans. A 26, 1877 (1995). https://doi.org/10.1007/BF02670775
  5. P. Yu, Z. Mei, and S. C. Tjong, Master. Chem. Phys. 93, 109 (2005). https://doi.org/10.1016/j.matchemphys.2005.02.028
  6. P. Li, E. G. Kandalova, V. I. Nikitin, A. G. Makarenko, A. R. Luts, and Z. Yanfei, Scr. Mater. 49, 699 (2003). https://doi.org/10.1016/S1359-6462(03)00402-0
  7. M. S. Song, B. Huang, M. X. Zhang and J. G. Li, Inter. J. Refract. Met. Hard Mater. 27, 584 (2009). https://doi.org/10.1016/j.ijrmhm.2008.09.009
  8. M. S. Song, M. X. Zhang, S. G. Zhang, B. Huang, and J. G. Li, Mater. Sci. Eng.A 473, 166 (2008). https://doi.org/10.1016/j.msea.2007.03.086
  9. Z. Wang and X. Liu, J. Mater. Sci. 40, 1047 (2005). https://doi.org/10.1007/s10853-005-6532-1
  10. Y. Choi and S. W. Rhee, J. Am. Ceram. Soc. 8, 986 (1995).
  11. A. O. Kunrath, T. R. Strohaecker, and J. J. Moore, Scr. Mater. 34. 175 (1996). https://doi.org/10.1016/1359-6462(95)00447-5
  12. C. R. Bowen and B. Derby, J. Mater. Sci. 36, 189 (1996).
  13. Z. J. Huang, B. Yang, H. Cui, and J. S. Zhang, Mater. Sci. Eng. A 351, 15 (2003). https://doi.org/10.1016/S0921-5093(02)00025-4
  14. J. M. Lee, S. H. Kim, Y. H. Cho, J. W. Kim and J. C. Lee, Korean J. Met. Mater. 49, 1001 (2011).
  15. Z. H. Wang, Mater. Sci. Eng. A 356, 15 (2003).
  16. Y. Li, J. Hu, Y. Liu, Z. Guo, and S. Tosto, J. Mater. Proc. Tech. 209, 2564 (2009). https://doi.org/10.1016/j.jmatprotec.2008.06.001
  17. J. J. Moore and H. J. Feng, Prog. Mater. Sci. 39, 243 (1995). https://doi.org/10.1016/0079-6425(94)00011-5