• Title/Summary/Keyword: Combustion source

검색결과 489건 처리시간 0.032초

하이브리드 로켓 추진장치 연소 열원을 이용한 절단기초실험 (A cutting Experiments the materials by using heat source of the Hybrid Propulsion System Combustion)

  • 유덕근;김수종;김진곤;구자예;문희장;이보영;길성만;오재영;국태승
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.344-349
    • /
    • 2003
  • The purpose of this study is to ascertain the ability of New type cutter using Hybrid Rocket Propulsion System to cut normal carbon steel and also compound metal like stainless steel which cannot be cut by regular oxygen-acetylene cutter. To compare cutting performance, Two different types of experiment with oxygen-acetylene and Hybrid Combustion cutters were performed. As a result, Hybrid Combustion cutter is used to cut both carbon steel and stainless steel with cutting speed of 400mm/min(carbon steel) and 250mm/min(stainless steel). Otherwise, oxygen-acetylene cutter can be used to cut only carbon steel with cutting speed of 500 $^{\sim}$ 700mm/min. The possibility of Hybrid Combustion cutter as a cutting machine was confirmed.

  • PDF

초소형 연소기를 위한 촉매 합성, 담지방법 및 담지체 (Catalyst Preparations, Coating Methods, and Supports for Micro Combustor)

  • 진정근;김충기;이성호;권세진
    • 한국연소학회지
    • /
    • 제11권2호
    • /
    • pp.7-14
    • /
    • 2006
  • Catalytic combustion is one of the suitable methods for micro power source due to high energy density and it can be applied to micro structured chamber without consideration of quenching since it is flameless combustion. Catalyst loading in the micro structured combustion chamber is one of the most important issues in the development of micro catalytic combustors. In this research, to coat catalyst on the chamber wall, two methods were investigated. First, $Al_2O_3$ was selected as a support of Pt and $Pt/Al_2O_3$ was synthesized through the alumina sol-gel procedure. To improve the coating thickness and adhesion between catalyst and substrate, heat resistant and water solvable organic-inorganic hybrid binder was used. Porous silicon was also investigated as a catalyst support for platinum. Through the parametric studies of current density and etching time, fabrication process of $1{\sim}2{\mu}m$ of diameter and about $25{\mu}m$ depth pores was confirmed. Coated substrates were test in the micro channel combustor which was fabricated by the wet etching and machining of SUS 304. Using $Pt/Al_2O_3$ coated substrate and Pt coated porous silicon substrate, conversion rate of fuel was over 95 % for $H_2/Air$ premixed gas.

  • PDF

미세 연소기 개발(I) - 소형 연소기 환경에서의 연소 특성 - (Design and Development of Micro Combustor (I) - Combustion Characteristics in Scale-Downed Combustor -)

  • 이대훈;최권형;권세진
    • 대한기계학회논문집B
    • /
    • 제26권1호
    • /
    • pp.74-81
    • /
    • 2002
  • Combustion phenomena in a sub-millimeter scale combustor have been investigated. To evaluate scale effect on flame propagation characteristics, a cylindrical combustion chamber with variable depth was built in-house. The combustor was charged with premixed gas of hydrogen and air and ignited electronically. A piezo electric pressure transducer recorded transient pressure after the ignition. Measurements were made at different test conditions specified with chamber depth and initial pressure as parameters. Visual observation was made through a quartz glass window on top side of the combustion chamber using high speed digital video camera. From the pressure data, available work was estimated and compared with energy input required for stable ignition. The preliminary results suggested that the net thermal energy release is sufficient to generate power and enables a combustor of the size in the present study to be used as the energy source of a micro power devices .

The Effects of Secondary Fuel Injection on Combustion Oscillation

  • Shigeru Tachibana;Laurent Zimmer;Park, Gyung-Min;Takeshi Yamamoto;Ufosawa, Yoji-K;Seiji Yoshida;Kazuo Suzuki
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.376-379
    • /
    • 2004
  • The purpose of this work is to develop an effective active control system for combustion instabilities of premixed combustors. For the first step, the natural modes of combustion oscillation were investigated for a methane-air premixed combustor and the controls by secondary fuel injection were examined. The main premixed flame is stabilized by a swirler with orifices for secondary injection installed on the central hub. For sensing purposes, a pressure transducer and a chemiluminescence sensor were placed on the appropriate positions. The acoustic characteristics and the source of the oscillation were analyzed by those signals. To test the controllability, two methods of actuations by secondary fuel injection were examined. One is the open loop control and the other is the closed loop control. The comparison of the reduction levels of p $_{rms}$ shows that the closed loop control with a phase-shift injection performs best in this condition.ition.n.

  • PDF

FDS code를 이용한 교량하부창고 화재발생원 영향분석 (Investigation of the Fire Source in the Warehouse under Bridge using FDS Code)

  • 지광습;이승정;신연호;심재원;김지환
    • 한국전산구조공학회논문집
    • /
    • 제24권6호
    • /
    • pp.663-673
    • /
    • 2011
  • 본 연구에서는 FDS code를 이용하여 교량하부창고 화재발생원과 교량높이의 영향을 분석하였다. 헵탄을 이용한 단위가연물의 연소실험, 실물모형 연소실험 결과와 FDS code를 이용한 해석결과의 비교를 통하여 FDS code의 유효성을 검증하였다. 이를 이용하여 교량하부 표준창고구조물의 실제 화재시나리오를 적용하여 교량높이 및 창고내부 가연물에 따른 콘크리트의 폭렬, 강도손실, 보강철근의 강도손실로 나누어 교량의 화재안전성을 평가하였다. 연구결과, 대부분의 교량이 하부창고화재에 대해 폭렬에 취약한 것을 확인할 수 있었다. 화재강도는 도서류가 가장 강하며 30m 높이 교량에 콘크리트의 강도저하, 폭렬 및 보강철근 강도저하를 가장 크게 발생시킬 것으로 예측되었으며, 고무류 창고화재의 경우 30m 이상 높이의 교량에 대해 화재안전성을 확보할 수 있었다.

화재발생 이후 분전반 차단기에서의 트래킹현상 진행 가능성 (Possibility of Are Tracking at the Circuit Breaker After Starting Fire)

  • 박영국;오대희;이승훈;박종택;김진표
    • 한국화재조사학회지
    • /
    • 제10권1호
    • /
    • pp.37-45
    • /
    • 2007
  • 트래킹은 대표적인 전기적인 발화원으로서 화재현장의 조사과정에서 차단기 등에서 트래킹이 식별되는 경우, 트래킹을 발화원인으로 추정한 상태에서 화재조사가 진행되고 있는 것이 실정이며, 이 때문에 방화 또는 실화 등에 의하여 화재가 발생했음에도 불구하고 발화원인이 트래킹 즉, 전기화재로 오인되는 경우가 있다. 따라서 화재현장에서 식별되는 트래킹이 화재 원인으로서 단정할 수 있는 전기적인 특이점인지의 여부를 검증하기 위하여 트래킹이 화재현장의 분위기에서 연소로 인하여 단기간 내에 발생할 개연성을 입증하기 위한 실험을 행하였다. 화재현장의 분위기를 모의하기 위하여 차단기 자체를 직접 연소시키는 연소실험과 화재분위기에서 차단기를 2차적으로 연소시키는 화재재현 실험을 행하였으며, 차단기의 제조사 및 연소상황에 따라 트래킹의 발생시기 및 위치 등에 차이가 있었으나, 모든 차단기의 전원측 부분에서 트래킹이 발생하였다. 실험결과, 차단기에서 연소만으로도 단기간 내에 트래킹이 발생할 수 있다는 사실이 입증되었으며, 화재현장의 화재원인 조사과정 중에 차단기에서 트래킹 형태가 식별되는 점만으로는 발화여부 또는 발화원인에 대하여 논단할 수 없다는 결론을 도출하였다.

  • PDF

PMF 분석을 이용한 ACE-Asia 측정기간 중 제주 고산지역 입자상 물질의 입경별 발생원 추정 (Size-resolved Source Apportionment of Ambient Particles by Positive Matrix Factorization at Gosan, Jeju Island during ACE-Asia)

  • 문광주;한진석;공부주;정일록
    • 한국대기환경학회지
    • /
    • 제22권5호
    • /
    • pp.590-603
    • /
    • 2006
  • Size-and time-resolved aerosol samples were collected using an eight-stage Davis rotating unit for monitoring (DRUM) sampler from 23 March to 29 April 2001 at Gosan, Jeju Island, Korea, which is one of the super sites of Asia-Pacific Regional Aerosol Characterization Experiment(ACE-Asia). These samples were analyzed using synchrotron X-ray fluorescence for 3-hr average concentrations of 19 elements including Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, and Pb. The size-resolved data sets were then analyzed using the positive matrix factorization(PMF) technique to identify possible sources and estimate their contributions to particulate matter mass. PMF analysis uses the uncertainty of the measured data to provide an optimal weighting. Twelve sources were resolved in eight size ranges($0.09{\sim}12{\mu}m$) and included continental soil, local soil, sea salt, biomass/biofuel burning, coal combustion, oil combustion, municipal incineration, nonferrous metal source, ferrous metal source, gasoline vehicle, diesel vehicle, and volcanic emission. The PMF result of size-resolved source contributions showed that natural sources represented by local soil, sea salt, continental soil, and volcanic emission contributed about 79% to the predicted primary particulate matter(PM) mass in the coarse size range ($1.15{\sim}12{\mu}m$) while anthropogenic sources such as coal combustion and biomass/biofuel burning contributed about 58% in the fine size range($0.56{\sim}2.5{\mu}m$). The diesel vehicle source contributed mostly in ultra-fine size range($0.09{\sim}0.56{\mu}m$) and was responsible for about 56% of the primary PM mass.

수용체 모델(PMF)를 이용한 서울시 대기 중 VOCs의 배출원에 따른 위해성평가 (Health Risk Assessment with Source Apportionment of Ambient Volatile Organic Compounds in Seoul by Positive Matrix Factorization)

  • 권승미;최유리;박명규;이호준;김광래;유승성;조석주;신진호;신용승;이철민
    • 한국환경보건학회지
    • /
    • 제47권5호
    • /
    • pp.384-397
    • /
    • 2021
  • Background: With volatile organic compounds (VOCs) containing aromatic and halogenated hydrocarbons such as benzene, toluene, and xylene that can adversely affect the respiratory and cardiovascular systems when a certain concentration is reached, it is important to accurately evaluate the source and the corresponding health risk effects. Objectives: The purpose of this study is to provide scientific evidence for the city of Seoul's VOC reduction measures by confirming the risk of each VOC emission source. Methods: In 2020, 56 VOCs were measured and analyzed at one-hour intervals using an online flame ionization detector system (GC-FID) at two measuring stations in Seoul (Gangseo: GS, Bukhansan: BHS). The dominant emission source was identified using the Positive Matrix Factorization (PMF) model, and health risk assessment was performed on the main components of VOCs related to the emission source. Results: Gasoline vapor and vehicle combustion gas are the main sources of emissions in GS, a residential area in the city center, and the main sources are solvent usage and aged VOCs in BHS, a greenbelt area. The risk index ranged from 0.01 to 0.02, which is lower than the standard of 1 for both GS and BHS, and was an acceptable level of 5.71×10-7 to 2.58×10-6 for carcinogenic risk. Conclusions: In order to reduce the level of carcinogenic risk to an acceptable safe level, it is necessary to improve and reduce the emission sources of vehicle combustion and solvent usage, and eco-car policies are judged to contribute to the reduction of combustion gas as well as providing a response to climate change.

PMF 모델을 이용한 용인-수원경계지역에서의 부유분진의 크기별 오염원 확인 (Source Identification of Ambient Size-by-Size Particulate Using the Positive Matrix Factorization Model on the Border of Yongin and Suwon)

  • 오미석;이태정;김동술
    • 한국대기환경학회지
    • /
    • 제25권2호
    • /
    • pp.108-121
    • /
    • 2009
  • The suspended particulate matters have been collected on membrane filters and glass fiber filters by an 8-stage cascade impactor for 2 years (Sep. 2005${\sim}$Sep. 2007) in Kyung Hee University-Global Campus located on the border of Yongin and Suwon. The 20 chemical species (Al, Mn, Si, Fe, Cu, Pb, Cr, Ni, V, Cd, Ba, $Na^+$, ${NH_4}^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$, ${NO_3}^-$, and ${SO_4}^{2-}$) were analyzed by an ICP-AES and an IC after performing proper pre-treatments of each sample filter. Based on these chemical information, the PMF receptor model was applied to identify the source of ambient size-by-size particulate matters. The receptor modeling is the one of the statistical methods to achieve resonable air pollution management strategies. A total of 10 sources was identified in 9 size-ranges such as long-range transport, secondary aerosol, $NH_{4}NO_{3}$ related source, coal combustion, sea-salt, soil, oil combustion, auto emission, incineration, and biomass burning. Especially, the secondary aerosol source assorted in fine and coarse modes was intensively studied.

다공성 철 분말을 이용한 열전지용 열원 적합성 연구 (Study on the Suitability of Heat Source for Thermoelectric Cells Using Porous Iron Powder)

  • 김지연;윤현기;임채남;조장현
    • 한국전기전자재료학회논문지
    • /
    • 제35권4호
    • /
    • pp.377-385
    • /
    • 2022
  • Thermal batteries are specialized as primary reserve batteries that operate when the internal heat source is ignited and the produced heat (450~550℃) melts the initially insulating salt into highly conductive eutectic electrolyte. The heat source is composed of Fe powder and KClO4 with different mass ratios and is inserted in-between the cells (stacks) to allow homogeneous heat transfer and ensure complete melting of the electrolyte. An ideal heat source has following criteria to satisfy: sufficient mechanical durability for stacking, appropriate heat calories, ease of combustion by an igniter, stable combustion rate, and modest peak temperature. To satisfy the aforementioned requirements, Fe powder must have high surface area and porosity to increase the reaction rate. Herein, the hydrothermal and spray drying synthesis techniques for Fe powder samples are employed to investigate the physicochemical properties of Fe powder samples and their applicability as a heat source constituent. The direct comparison with the state-of-the-art Fe powder is made to confirm the validity of synthesized products. Finally, the actual batteries were made with the synthesized iron powder samples to examine their performances during the battery operation.