• 제목/요약/키워드: Combustion properties

검색결과 819건 처리시간 0.027초

Combustion Characteristics of Hydrogen by the Thermodynamic Properties Analysis

  • Han, Sung Bin
    • 에너지공학
    • /
    • 제24권2호
    • /
    • pp.84-90
    • /
    • 2015
  • Hydrogen has some remarkably high values of the key properties for transport processes, such as kinematic viscosity, thermal conductivity and diffusion coefficient. Hydrogen, as an energy medium, has some distinct benefits for its high efficiency and convenience in storage, transportation and conversion. Hydrogen has much wider limits of flammability in air than methane, propane or gasoline and the minimum ignition energy is about an order of magnitude lower than for other combustibles. Statistical thermodynamics provides the relationships that we need in order to bridge this gap between the macro and the micro. Our most important application will involve the calculation of the thermodynamic properties of the ideal gas.

Ablative Properties of 4D Carbon/Carbon Composites by Combustion Test

  • Park, Jong-Min;Ahn, Chong-Jin;Joo, Hyeok-Jong
    • Carbon letters
    • /
    • 제9권4호
    • /
    • pp.316-323
    • /
    • 2008
  • The factors that influence ablation resistance in fiber composites are properties of the reinforced fiber and matrix, plugging quantity of fiber, geometrical arrangement, crack, pore size, and their distributions. To examine ablation resistance according to distribution of crack and pore size that exist in carbon/carbon composites, this study produced various sizes of unit cells of preforms. They were densified using high pressure impregnation and carbonization process. Reinforced fiber is PAN based carbon fiber and composites were heat-treated up to $2800^{\circ}C$. The finally acquired density of carbon/carbon composites reached more than $1.932\;g/cm^3$. The ablation test was performed by a solid propellant rocket engine. The erosion rate of samples is below 0.0286 mm/s. In conclusion, in terms of ablation properties, the higher degree of graphitization is, the more fibers that are arranged vertically to the direction of combustion flame are, and the less interface between reinforced fiber bundle and matrix is, the better ablation resistance is shown.

산화제 과잉 예연소기 냉각 성능 수치 해석 (Numerical Analysis on Cooling Characteristics of Oxidizer-Rich Preburner)

  • 이선미;하성업;이수용
    • 한국추진공학회지
    • /
    • 제17권3호
    • /
    • pp.67-75
    • /
    • 2013
  • 케로신-액체산소 로켓 엔진에 적용되는 산화제 과잉 예연소기의 냉각 성능 확인을 위한 수치 해석을 수행하였다. 예연소기 1차 연소구역을 상사하기 위하여 분사기 배열에 따른 혼합비를 바탕으로 연소가스 물성치를 계산하였고, 냉각제로서 채널을 흐르는 산소의 물성치는 실제기체 조건에 대하여 적용하였으며, 1차 연소구역과 냉각제로 쓰인 액체산소의 혼합과정은 다상혼합모델을 적용하였다. 수치 해석으로 계산된 결과를 연소시험과 비교하였으며, 이를 통하여 재생냉각 채널과 연소실에서의 물성 등을 정량적으로 파악할 수 있었다.

ICE GROSS HEAT RELEASE STRONGLY INFLUENCED BY SPECIFIC HEAT RATIO VALVES

  • Lanzafame, R.;Messina, M.
    • International Journal of Automotive Technology
    • /
    • 제4권3호
    • /
    • pp.125-133
    • /
    • 2003
  • Several models for the evaluation of Gross Heat Release from the internel combustion engine (ICE) are often used in literature. One of these is the First Law - Single Zone Model (FL-SZM), derived from the First Law of Thermodynamic. This model present a twice advantage: first it describes with accuracy the physic of the phenomenon (charge heat release during the combustion stroke and heat exchange between gas and cylinder wall); second it hat a great simplicity in the mathematical formulation. The evaluation of Heat Release with the FL-SZM is based on pressure experimental measurements inside the cylinder, and ell the assumption of several parameters as the specific heat ratio, wall temperature, polytropic exponent for the motored cycle evaluation, and many others. In this paper the influence of gases thermodynamic properties on Cross Heat Release has been esteemed. In particular the influence of an appropriate equation for k=k(T) (specific heat ratio vs. temperature) which describes the variations of gases thermodynamic properties with the mean temperature inside the cylinder has been evaluated. This equation has been calculated by new V order Logarithmic Polynomials (VoLP), fitting experimental gases properties through the least square methods.

다공 세라믹 연소기 속에서의 예혼합연소에 대한 민감도 해석의 적용 (Application of sensitivity analyses in premixed combustion within a porous ceramic burner)

  • 임인권
    • 대한기계학회논문집B
    • /
    • 제22권2호
    • /
    • pp.162-172
    • /
    • 1998
  • A numerical study of premixed combustion within a porous ceramic burner (PCB) is performed to understand flame behavior with respect to various model parameters. Basic flame structure within the porous ceramic burner and species profiles such as NO and CO are examined. Sensitivity analysis of flame speed, gas and solid temperature, NO and CO emission from the burner with respect to reaction steps and various physical properties of the ceramic material is applied to find the most significant parameters in selection of porous materials for the porous ceramic burner. Effects of thermal conductivity, extinction coefficient and scattering albedo on the burner characteristics are studied through the sensitivity analysis. The results of sensitivity study reveal the order of importance in ceramic material properties to get suitable burner performance. Scattering albedo, which governs the ratio of absorbed energy by the ceramic material to total radiative energy transferred, is one of the most important parameters in the material properties since it affects the actual absorbed radiation rate and thus it largely affects the flame structure. Through the study, it is found that the sensitivity study can be used to estimate the flame behavior within the porous ceramic burner more effectively.

고형 에탄올 연료의 기본 물성치 및 연소특성 (Preliminary Properties and Combustion Behavior of Solidified Ethanol Fuel)

  • 김혜민;조민경;양성호
    • 항공우주시스템공학회지
    • /
    • 제13권3호
    • /
    • pp.9-14
    • /
    • 2019
  • 현대에 사용하는 다양한 종류의 액체 및 고체연료는 각각 장단점을 가지고 있으며, 이에 따라 많은 연구자들은 각 연료의 단점을 극복하고 장점만을 취하고자 새로운 형태의 연료를 연구하였다. 본 연구는 액체 에탄올을 고형화 하는 공정을 개발하고, 제조된 연료의 기초 물성치 및 연소특성을 관찰하는데 그 목적이 있다. 고형 에탄올은 아가로스 하이드로젤을 제조하고 이를 에탄올에 침전시키는 방법으로 제조하였다. 실험 조건으로 제조된 고형 에탄올 연료의 정성적/정량적 특성을 관찰하였으며, 이를 통해 제조된 연료의 유효성 및 고형 에탄올 연료의 실제 활용 가능성을 고찰하였다.

대향 부연소실이 있는 밀폐연소실 내의 $NO_x$ 저감기구에 대한 연구 (A Study on NOx Reduction Mechanism in a Closed Vessel with Opposed Dual Pre-chambers)

  • 김재헌;이수갑;정인석
    • 한국연소학회지
    • /
    • 제2권1호
    • /
    • pp.17-27
    • /
    • 1997
  • It is well known that NOx formation has a strong dependence on the maximum temperature and correspondingly with the maximum chamber pressure of a closed combustion system. However, in a case of impinging-jet-flame (IJF hereafter) combustion with opposed dual pre-chambers, low $NO_x$ formation with high pressure could be achieved, but its mechanism has not been clearly understood so far. In this study, a three-dimensional analysis is adopted to resolve time-variant local properties that might indicate the mechanism of IJF combustion. Numerical results are verified by comparing them with experiments. The IJF combustion in a vessel with no pre-chamber, with single pre-chamber, and with dual pre-chambers is studied. The orifice diameter and the volumetric ratio of pre-chamber are used as geometric parameters. The effects of main-chamber ignition delay time and combustion time of main-chamber, orifice exit velocity, orifice exit temperature, turbulent kinetic energy of main-chamber and spatial distribution of temperature in the latter stage of combustion are investigated. A longer main-chamber ignition delay and a shorter main-chamber combustion time suppress the formation of high temperature region with respect to mean temperature, which consequently results in less NO production.

  • PDF

열분해 용융소각로 연소실의 2차공기 주입 영향에 관한 전산해석 및 실험 (Effect of Secondary Air on Flow and Combustion Characteristics in a Pyrolysis Melting Incinerator)

  • 전병일;박상욱;신동훈;류태우;전금하;황정호;이진호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제28회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.149-157
    • /
    • 2004
  • In the present paper we studied experimentally fundamental optimization of oxygen enriched pyrolysis melting incinerator, Characteristics of this system was confirmed dealing with the gas flow and combustion properties for the inside secondary air injection. The experiment setup has a disposal rate of 30kg/hr which was measured by the inside temperature and gas. Along with above experiments, the three-dimensional computation was employed to analyse the combustion fluid dynamics and gas residence time. Equations for turbulence and heat - transmission as well as chemical reactions were solved by using common codes. The experimental combustion chamber was composed of staged combustion types structure for reducing NOx. Finally, it was verified that the control of the secondary air and air ratio of thermo stack were important. In the computational analysis, it showed reasonable agreement with the experimental results regarding the temperature and discharged gas concentration.

  • PDF

저온 바이오디젤 연료의 연소특성에 관한 실험적 연구 (An Experimental Study on Combustion Characteristics when applied Bio-Diesel Fuel at Low Temperature)

  • 이성욱;이정섭;박영준;김득상;이영철;조용석
    • 한국분무공학회지
    • /
    • 제13권4호
    • /
    • pp.206-211
    • /
    • 2008
  • In this research, combustion and spray characteristics were investigated experimentally in a constant volume chamber by applying bio-diesel fuel to a common-rail system in which precise control is available for utilizing environmentally friendly properties of bio-diesel fuel. The experiment was conducted at fuel temperatures $20^{\circ}C$ and $-20^{\circ}C$ to investigate combustion characteristics of bio-diesel fuel provoking problems in fluidity specially in a low temperature. For the visualization, the experiment was carried out under various conditions of ambient pressure, injection pressure and fuel temperature. The test was made by three different types of diesel fuels, conventional diesel, BD20 and BD100. In summary, this research aims to investigate combustion characteristics in the application of bio-diesel fuels and compare the results with performance of conventional diesel fuel. This experimental data may provide fundamentals of spray and combustion of bio-diesel fuels at a low temperature and contribute to the development of bio-diesel engines in future.

  • PDF

2성분 혼합연료를 이용한 감압비등 분무특성에 관한 연구 (A Study on the Spray Characteristics of Flash Boiling Using Two Component Mixing Fuel)

  • 명광재;윤준규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권4호
    • /
    • pp.451-458
    • /
    • 2009
  • This experimental study was conducted to investigate macroscopic characteristics of the flash boiling spray with tow component mixing fuel. Homogeneous Charge Compression Ignition (HCCI) is a newer combustion method for internal combustion engines to reduce nitrogen oxide and particulate matter simultaneously. But it is difficult to put this combustion method to practical use in an engine because of such problems as instability of combustion in low load operating conditions and knocking in high load operating conditions. In HCCI, combustion characteristics and exhaust emissions depend on conditions of air/fuel mixture and chemical reactions of fuel molecules. The fuel design approach is achieved by mixing two components which differ in properties such as density, viscosity, volatility, ignitability and so on. We plan to apply the fuel design approach to HCCI combustion generated in a real engine, and examine the possibility of mixture formation control using the flash boiling spray. Spray characteristics of two component fuel with a flash boiling phenomenon was investigated using Shlieren and Mie scattering photography. Test fuel was injected into a constant volume vessel at ambient conditions imitated injection timing BTDC of a real engine. As a result, it was found that a flash boiling phenomenon greatly changed spray structure, especially in the conditions of lower temperature and density. Therefore, availability of mixture formation control using flash boiling spray was suggested.