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ABSTRA CT-Several models for the evaluation of Gross Heat Release from the internel combustion engine (ICE) are
often used in literature. One of these is the First Law — Single Zone Model (FL-SZM), derived from the First Law of
Thermodynarmics. This model presents a twice advantage: first it describes with accuracy the physic of the phenomenon
(charge heat release during the combustion stroke and heat exchange between gas and cylinder wall); second it has a great
simplicity in the mathematical formulation. The evaluation of Heat Release with the FL-SZM is based on pressure
experimental measurements inside the cylinder, and on the assumption of several parameters as the specific heat ratio, wall
temperature, polytropic exponent for the motored cycle evaluation, and many others. In this paper the influence of gases
thermodynamic properties on Gross Heat Release has been esteemed. In particular the influence of an appropriate equation
for k = k(T) (specific heat ratio vs. temperature) which describes the variations of gases thermodynamic properties with the
mean temperature inside the cylinder has been evaluated. This equation has been calculated by new V order Logarithmic
Polynomials (VoLP), fitting experimental gases properties through the least square methods.
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NOMENCLATURE

Qhr

= gross heat release

k(T) = specific heats ratio variable with the mean gas
temperature

T = charge mean temperature inside the cylinder

p = pressure measured inside the cylinder

1% = volume swept from the piston

Q. = heat exchanged with the cylinder wall

U, = internal sensible energy

o =00,

w = work due to the piston motion

m = trapped mass

c(T) = specific heat at constant volume, variable with
temperature

c(T) = specific heat at constant pressure, variable with
temperature

Nu = Nusselt number

Re  =Reynolds number

b =Reynolds exponent in the thermal exchange
correlation

B = bore

*Corresponding author. e-mail: mmessina@diim.unict.it

o
&

= calibration constant
= calibration constant
= characteristic charge velocity
n, = piston mean velocity
= pressure of the motored cycle
Vs, T, = reference pressure, volume and temperature

) = equivalence ratio

p = compression ratio

m, = burned mass

m, = unburned mass

k(T) = specific heat ratio for the burned mass

k{T) = specific heat ratio for the unburned mass

9 = crank angle

3, = start of combustion crank angle

AY¥  =total combustion duration

a, m = Wiebe function parameters

Tsor = start of ignition temperature

T... = highest temperature in the combustion chamber
Cpu =specific heat at constant pressure for the

unburned mass

= specific heat at constant pressure for the burned
mass

R,, R, =unburned and burned gas constant

Cplu
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1. INTRODUCTION

Pressure measurements in thermodynamics analysis are a
very powerful tool for the determination of the parameters
that characterized ICE combustion. The principal appro-
aches are the calculation of Mass Fraction Burned (MFB)
for the determination of the characteristic crank angles in
the combustion stroke, and the Heat Release analysis.
Heat Release analysis brings to the determination of the
Rate Of Heat Release (ROHR), a useful tool for the
evaluation of combustion noise and NO, emissions, and
to Cumulative Heat Release utilized for the determination
of the principal combustion characteristics, as the
combustion efficiency.

Due to the great importance of Heat Release analysis,
several models have been developed in the last years.
One of first simple models (Rassweiler and Withrow,
1938) needs only pressure data but presents a great
disadvantage: the assumption of a constant value for the
polytropic exponent, when really it is well known that
different values occur for the compression and expansion
strokes, and during the combustion phase.

Several models were elaborated, from the most
simple (McCuiston er al., 1977), in which the results are
affected from an error due to the assumption to neglect
volume variation during the combustion stroke, to the
most complex bi— or three-dimensional models
(Kamimoto et al., 1977; Sastry and Chandra, 1994)
which present the same results of the best 1-D models
and a major mathematical complexity and computational
weight.

A Single Zone Model, simple and accurate, was
developed by Gatowski et al. (Gatwoski et al., 1984), and
after optimized (Chun and Heywood, 1993) for a charge
with high swirl motion.

The present model is based on the First Law of
Thermodynamics (First Law Model) and usually it is
utilized in four different forms: 1) Basic First Law
(k = cost. and absence of heat exchange between gas and
cylinder wall); 2) First Law and Heat Transfer (k = cost.
and heat exchange between gas and cylinder wall); 3)
First Law with Variable Specific Heats (k=k(T) and
absence of heat exchange between gas and cylinder
wall); 4) First Law with Variable Specific Heats and Heat
Transfer (k=k(T) and heat exchange between gas and
cylinder wall).

Often in literature, when First Law Model is used, a
constant value for k is chosen. Only with a great
experience in this research area it is possible to choose
the exact value for k that brings to the same results of an
analysis based on gas specific heats ratio variable with
the temperature.

The sub-model 4) is the model that furnishes the most
reliable results (Brunt et al., 1997).

2. FIRST LAW WITH VARIABLE SPECIFIC
HEATS RATIO AND HEAT TRANSFER

The equation for the evaluation of the heat release can be
inferred from (Gatwoski et al., 1984; Brunt and Platts
1999) and is:

k(T)
k(T)-1

dQ,,. = pdV + Vdp + dQ, (1

1
k(T)—1

Equation (1) is obtained from the first law of
thermodynamics, for closed systems:

dU,=dQ +dW )
with

dW = —p dv

dU,=m c(T) dT

dT = d(pV)/imR 3)
Rlc(T)y = KT)-1

(with the assumption that the gas constant R does not
change during the combustion process).

Substituting Equation (3) in (2) and rearranging the
terms, it is possible to obtain the traditional equation (1)
for Heat Release.

In this research, to model the heat exchange between
gas and cylinder wall, has been utilized the Woschni
model (Woschni, 1967). In this model, applied to ICE,
the heat exchange coefficient is:
h.=326C,B" ' p,T"" "W  [W/(mK)] 4)

In equation (4) & is set to 0.8 (from thermal exchange
correlation: Nu = C Re®®); B is expressed in [m], p in
[kPa] and 7 in [K]; the characteristic charge velocity, due
to piston motion and fo combustion process, is expressed
n [my/s]:

VTO

w=228a,+3.24x107C,
PoVo

(p—pPw) 5)

Po» Vo, Ty can be referred at TVC or at SOI.
For the evaluation of p,, a polytropic equation as

V n
o= po(vo) ©)

was utilized (Chun and Heywood, 1993), where n is
usually set to 1.3, since variation from 1.25 and 1.35 has
no significant effect on the heat exchange between gas
and cylinder wall, and neither on the Gross Heat Release.

In this application, variation from 1.25 and 1.35 brings
to a maximal error of £0.4% on the Q,., and to an error of
+0.1% on the Gross Heat Release.
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In the heat transfer model, the constants C, and C, was
included to allow the model to be adjusted easily. These
two constants are not physical quantities and may differ
from engine to engine (Chun and Heywood, 1993).
Therefore these two constants are calibrated with actual
engine data.

2.1. Specific Heat Ratio Influence on Gross Heat Release
Several parameters are present inside the mathematical
model for the Gross Heat Release evaluation. Since the
specific heat ratio kX has a great influence on the heat
release peak and on the shape of the heat release curve
(Brunt er al., 1998), many researchers have elaborated
different mathematical equations to describe the dependence
of k from temperature. First and second order equations
have been elaborated: &(T) = a + bT (Heywood, 1988)
and K(7) = a + bT + cT? (Brunt et al., 1998).

Starting from this assumption, the objective of this
paper is to develop and to implement a First Law —
Single Zone modified model for the heat release inside
ICE, where & is temperature dependent, with a VoLP
functional form:

KT) = f{ay + a) (T) + @, [In(DP+...+ a5 [In(T)]’}

To verify the model accuracy, it has been implemented
for the calculation of the Gross Heat Release for a CFR
engine, fuelled with 2,2.4-Trimethylpentane, engine
speed = 600 t/min, @ =1, p =5.8.

In Figure 1 it is shown the great influence of £ value on
the Cumulative Gross Heat Release, while in Figure 2 it
is possible to see how k has not a meaningful influence on
the MFB. For a correct evaluation of the heat release it is
necessary to use a mathematical function, which describes
with accuracy the trend of k with the temperature.

Qgross [J]

Crank angle [deg]

Figure 1. Cumulative gross heat release trend at various k
(SOI at 347° - TDC at 360°).
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Figure 2. MFB dependence from k.

2.2. Determination of Specific Heats Ratio k = k(T)

2.2.1. Mass fraction burned

Since k is depending on temperature and on charge
composition, and since MFB is not depending on the
value chosen for the constant k£ (see Figure 2), it is
possible to write for the function k(T):

k(T) = ky(T)x,(T) + [1 = x,(T) ku(T) (N

and x,(T) can be evaluated from the Cumulative Gross
Heat Release with &k = cost. starting from:

Qoo

. m,
A Qurons(B) ®
where:
B
Q_qrm‘\(ﬂ) = Z AQhr (9)

SOl

Evaluated x,(1¥ (Figure 3) and the “T — ¢ relationship
(Figure 5), it is possible to evaluate the trend of x, with
the mean charge temperature (Figure 4), and so implement
x,(T) inside Equation (7).

Figure 3 represents the comparison between the MFB
(evaluated through the experimental pressure measure-
ments and applying the First Law — Single Zone Model
(1) with k= 1.3), the Wiebe Equation and sixth order
traditional polynomial interpolation using the least square
method.

The Wiebe function is:

X9 =1~ exp[—a(ﬂA_ ﬂ’?"jw l] (10)

The parameters a and m have been chosen to maximize
the correlation factor R*: a and m are adjustable para-
meters (Heywood, 1988).

In this application the fitting polynomial (Poli. Experi-
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Figure 3. Mass fraction burned vs. crank angle.

Table 1. MFB crank angle errors.

x,=0.1 x,=0.5 x,=0.9
Wiebe 1.9° 1.1° 0.5°
VI order Poti. 0° 0.3° 0.2°

mental in Figure 3) is represented by: x, () = ao + a, ¥
+a, ¥+ +ar.

Table 1 shows the crank angle error referred to the
Wiebe function and to the VI order polynomial, when
x=0.1, x,=0.5, x,=0.9.

Figure 4 represents the MFB trend with mean charge
temperature. Experimental data on x, and other three
curves are represented: 1) Log. Pol., 2) Linear Interpol.,
3) Axis without Interp. These three curves fit experimental

12 1™ o Experimental

BEEEEE TR Log. Pol. (R"2=0.9992)

14— —
Linear interp. (R*2=0.9990) ?

Axis without interp. (R*2=0.9970)

0.8 7—

0.6 {
I

MFB - xb
—

]

630 830 1030 1230 1430 1630 1830
Temperature [K]

Figure 4. Mass fraction burned vs. temperature.

data respectively with a VoLP, with a linear inter-
polation, and with an axis passing through the first and
the last experimental points {(Equation 11). All three
curves present a high correlation factor R, so that it is
possible to choose the curve with the simplest mathe-
matical functional form (Equation 11).

The equation for the axis passing through the first and
the last experimental points (R*=0.997) is:

x(T)y=0 for T < Ty,

T-T.
xo(T) = T_m;—_;TOS(; for T K T< T, (11)
x(T=1 for T > T,

Figure 5 reports the temperature and MFB experi-
mental trends with crank angle. It is possibie to notice as
the maximum value of the MFB correspond to the
maximum value of temperature, while the MFB start to
be different from zero, only after the Start Of Ignition
(SOI = 347° crank angle).

2.2.2. Burning and unburning specific heat ratio

The function k=k(T) is the ratio of specific heat at
constant pressure ¢ (7), and specific heat at constant
volume ¢ (7). So, an accurate function for k(") is
depending on an accurate evaluation of ¢,(T).

The function adopted to fit experimental data on ¢,
gases, is a VoLP (Equation 12). This choice is derived
from precedent researches of the authors (Lanzarame
and Messina, 2000; Lanzafame and Messina, 2001a;
Lanzafame and Messina, 2001b; Lanzafame and Messina,
2002) in which several VoLP advantages have deen
showed: 1) high fitting accuracy (R* > 0.99); 2) the
capacity to fit experimental data on large temperature
ranges only with a single VoLP; 3) possibilitv to
extrapolate experimental data beyond experimental

2000 ——T— r 1.2
1800 = Temperature \i—‘ —
1600 s mFB
z 1400
© 1200
3
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g— 800
£ |
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|
400 R R
200
o] a
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Figure 5. Temperature and x, trends vs. crank angle.
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Figure 6. Comparison between traditional interpolation
and new Logarithmic Polynomial interpolation.

temperature range.
The functional form of a VoLP for the ¢, is:

c,(T) = ay+a,In(T)+a,[In(T)]’

+a;[In(D))+.. .+as[In(D)T (12)
where ay, .., as are the constants to be evaluate through
the least square method (Milton and Arnold, 1986), on
the basis of ¢, experimental data. Due to their high inter-
polation accuracy, VoLP can be utilized to extrapolate
experimental data beyond experimental temperature
range (see Figure 6) (Lanzafame and Messina, 2002).
In Figure 6, ¢, experimental data on CgH,; (Scott,
1974) have been fitted with a VoLP, and with a
traditional V order polynomial (c(T) = a, + &,T + a&,T° +
a,T* +:+ a;T;). In the same figure we can see how the
traditional polynomial cannot be used beyond experi-
mental temperature, while a VoLP can be extrapolated
for a 30%, with an error less than 1% (Lanzafame and
Messina, 2002). Figure 6 is referred to the C4H ,, but the
same trend has been demonstrated for many other gases

Table 2. ¢, VoLP coefficients [¢,]=[J/(mol K)].

129

(Lanzafame and Messina, 2002).

In order to evaluate ¢,(7), a complete reaction of
combustion has been considered, where the reagents of
the reaction are fuel and technical air (21%, O, and 79%,
N,), while the products are constituted only by the
species with a significant moles number (Sastry and
Chandra, 1994; Heywood, 1988). The products consider-
ed are CO,, H,0 and N,. Fuel ¢, experimental data have
been taken from literature (Scott, 1974), and utilizing the
least square method, the six constant a,,..., as have been
evaluated (Table 2). In Table 2 are present also the VoLP
coefficients for the other gases, and the relative temper-
ature range of validity. Experimental data for all the other
gases have been taken from JANAF Thermochemical
Tables (JANAF, 1971).

Evaluated the ¢, for each gas, ¢

» and c,, have been

calculated:
¢, (T) = %c,,%“m(T)+(Ti’j)ucp%(T)+(—n%c,,Nz(T)
(13)
Meo, Mu,0 Ny
e, (T) = (mm,ibc"mz(T)+(mmf),,cp”zo(T)+(m,(,:)/,cp”z(T)
(14)

and at the end k(7) and &,(7) have been evaluated:

(D) |
k,,(T)—m (15)
(D)
kh(T)_ p (T) -Rh (16)

The Figures 7 and 8 show the k function, respectively
depending on crank angle and temperature.

In Figure 7, when x, = 0 the value of k (for the actual
charge) is the same of the k for the unburned mass, while

Species a, a, a, a, a, as R
200 <$i—l§000 K —43029.69896 | 36241.19904 |-12036.09466 | 1966.430702 |-157.61132 {4.9695987 | (0.999964
273 <TO<23500 K 10228.342599 |-7184.923331] 2010.868084 |~279.694958 | 19.348226|-0.532569| 0.999662
273 <Tl\iz3500 K —7513.364197| 5708.380466 |~1712.173896| 254.295542|—-18.699837| 0.544972| 0.999927
273 < ,1?83500 K —1412.367846| 1288.467702 —452.811975| 77.548094) ~6.435215| 0.207544] 0.999993
273 <.1{_Iio3500 K —11780.764955| 8490.521798 (-2414.775747 | 339.336617 | -23.542768 | 0.645407| 0.999893
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Figure 7. Variation of specific heat ratio with crank angle.
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Figure 8. Variation of specific heat ratio with temperature.

in the case of x, = | the k value for the actual charge is the
same of that for the burned mass. For the crank angle
between x, =0 and x,=1 k varies gradually, from the
values of the unburned mass to the values of the burned
mass. In Figure 8, k value depends on temperature. When
temperature reach its peak value x, = 1, after the temper-
ature decrease, the mass is completely burned, and the &
value for the actual mass is the same one of k for the
burned mass.

2.2.3. Comparison with other k(T) functions
Figure 9 shows a comparison between several k functions
utilized in literature.

In Figure 9 the functions “k” and “k + gas res.” repre-
sent the k functions utilized in this research: the first do
not consider any fraction of residual gas in the cylinder,
while the second considers a 10% of residual gas. The
difference is very small, and the results on the heat
release are the same. Residual gas fraction presents in the

s - Kamimoto ]

1.26

1.24

122
600 800 1000 1200 1400 1600 800

TIK]

Figure 9. Comparison between several k functions ut lized
in literature.

cylinder creates a variation of the k function of about
0.1%, and a variation of 0.002% on the heat release
calculated.

In Figure 9 are also represented several k=Kk(T)
functions (Brunt ef al., 1998; Chun and Heywood, 1987,
Gatowsky et al., 1984; Kamimoto et al., 1977).

Brunt utilized a second order function, evaluated for a
SI Engine, fuelled with CgH,,. This function has been
evaluated through a multi dimensional model, and it is
the mean function among the k functions evaluated for
0.8 < @ < 1.2. Gatowsky utilized an empirical formulas,
implemented on a SI Engine, fuelled with CiHgN, and
® = 1. Kamimoto constant function (referred in (Kamimoto
etal., 1977) as model la) is utilized for a Diesel DI and it
is evaluated through a comparison between a Single Zone
Model and a Bi-Zone Model, in order to equalize the
value of the heat release calculated. The same for the
Chun and Heywood function, evaluated for a SI Engine.
In all the models considered, the functions k = k(T) have
been evaluated for a specific application and derived
from complex numerical models, or from the experience,
or from single-zone and bi-zone models comparisons.

The authors suggest an alternative, simple and direct
method for the calculation of the k = k(T) function. The
method is valid for any application and it needs only of
gas thermodynamics properties, easily findable in literature,
and of MFB, directly valuable from experimental pressure
measurements,

2.3. Gross Heat Release Evaluation

Evaluated the effective correlation between & and T (and
so between k and 99, since the correlation between T and
¥ derived from experimental measurements), the Gross
Heat Release has been evaluated and compared with the
Gross Heat Release calculated for k = cost. (see Figure 10
and 11).
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Figure 10. Comparison between four models for the Heat
Release.

In Figure 10 is shown the comparison between four
different models: 1) Q... and k = cost: Heat Release without
heat exchange between gas and wall cylinder and specific
heat ratio constant; 2) Q.. and k= k(7). Heat Release
without heat exchange between gas and wall cylinder and
specific heat ratio variable with the temperature; 3) Qoo
and k = cost: Heat Release with heat exchange between
gas and wall cylinder and specific heat ratio constant; 4)
Q.o and k=k(T): Heat Release with heat exchange
between gas and wall cylinder and specific heat ratio
variable with the temperature.

To evaluate Q,,,, with k = [.35, in the Woschni model

the constants C, (Equation 4) and C, (Equation 5) have
been set to 1. For the evaluation of @, with k = k(T), in
the Woschni model the constant C, has been set to 1.69
and C, to 2.47.
The implementation of the Woschni model leads to an
increment of the heat release peak of about 5% in the
models with k = 1.35, and at an increment of 8.7% in the
models with k& = k(7).

It is also important to underline as the difference
between the last two models (Q,., and k = cost and O,
and k = k(T)) is of 30%, while the choice of a k = k(T) it is
not important for the determination of the EEOC (Estimate
End Of Combustion) crank angle. The difference between
the last two models is due only at the value of the cons-
tant assigned at k in the model 3.

Varying the constant value of & in model 3, it is possible
to find the value that cancels the difference between
models 3 and 4 (see Figure 11). But the “a priori” exact
choice of the constant to be assigned at k in the models 1
and 3, depends on different parameters, and it is difficult
to put into practice the exact choice.

The implementation of a k£ = k(7) function reduce notably
the error deriving from a wrong choice of the constant for &.

Heat Release
1200 |
ross - k=1.275__ —
1000 + A_gsi_r L — VA
Qpgross - k=k(T)

]t,,

Quer - k=1.275
Quet - k=k(T)

800 +—- -1 — +——

600 L__,_.._._.,

Q[J]

400

200 : —

347 357 367 377 387 397 407 417
Crank angle [deg]

Figure 1 1. Exact choice for the constant &.

In this application the traditional single zone model
coincide with the mode] proposed by the author only for
k =1.275. Changing engine, fuel or application, the exact
value to be assigned at k& will be varied, and only with a
great experience it will be po

ssible to choose the correct value for k. Utilizing a
k = k(T) function it is possible to avoid this typology of
error.

To verify the independence of x, from the (7T function
or from the constant value, Figure 12 shows the comparison
between the MFB calculated with the four models. It is
possible to notice the good accordance of the four MFB.
In Figure 13 it is shown the comparison between the four
models in the calculation of the Rate of Heat Release.
Also in this case the value for the constant 4 is fundamental.
The difference between the models with &k = cost. and the

Mass Fraction Burned

MFB

VRGN il o
347 357 367 377 387 397
Crank angle [deg]

# k=cost. - Without gas-cylinder heat transfer
< k=k(T) - Without gas-cylinder heat transfer
Qk=cost. - With gas-cylinder heat transfer
Ak=K(T) - With gas-cylinder heat transfer

]

Figure 12. MFB for the four models.
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Figure 13. ROHR for the four models.

models with k = k(T) is about of 30%, while do not have
a great relevance the implementation of the Woschni
model. The model influences only the final part of the
RORH. The crank angle at which corresponds the RORH
peak is the same in the four models.

3. CONCLUSIONS

In this research the influence of a specific heat ratio
depending on temperature for the calculation of the Gross
Heat Release inside ICE has been evaluated. For the
evaluation of Gross Heat Release, the traditional First
Law - Single Zone Model, modified by the authors, has
been implemented. In this new model an original k = k(7)
function has been evaluated. This function has been
obtained using new V order Logarithmic Polynomial (VoLP)
to fit gases thermodynamic properties. Woschni model
has been implemented for the heat exchange between gas
and cylinder wall.

The implementation of a k = k(T) function, instead of a
constant value, do not affect the determination of
combustion crank angles, but it is fundamental for the
evaluation of the Gross Heat Release and of the Rate of
Heat Release.

Very often in literature the First Law - Single Zone
Model with a constant value for the specific heat ratio is
utilized. The exact value for k depend on several para-
meters, which characterize the particular application, and
only with a great experience it is possible to choice “a
priori” the correct value for the constant k. An incorrect
choice could bring to great errors, while the use of a
correct function for & = k(7) will bring with simplicity to
the exact evaluation of the Gross Heat Release and of the
Rate of Heat Release.
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