• 제목/요약/키워드: Combustion period

검색결과 252건 처리시간 0.023초

소나무와 떡갈나무의 주요 부위별 연소특성에 관한 연구 (The Combustion Characteristics of Tree Branches, Barks, Living Leaves and Dead Leaves in Pinus Densiflora and Quercus Dentata)

  • 박영주;이시영;신영주;김수영;김영탁;이해평
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 춘계학술논문발표회 논문집
    • /
    • pp.303-307
    • /
    • 2008
  • 본 연구에서는 영동지역의 대표 수종인 소나무와 떡갈나무를 대상으로 주요 부위별 열적 특성을 고찰하고자 콘칼로리미터 시험(ISO 5660-1)을 수행하여 총연기발생량과 연기온도, 연소에 따른 산소소모량을 분석하였다. 소나무의 낙엽과 생엽은 연소초기에 급격하게 연기방출량이 증가하면서 가지와 수피에 비하여 총연기방출량이 약 8.3배 정도 높은 것으로 나타났으며 떡갈나무의 가지와 수피는 소나무보다 가지는 14.4배 정도, 수피는 7.2배 정도 높은 것으로 나타났다. 또한, 연기발생 최고온도는 $338.35{\sim}353.25\;K$ 사이로 나타남을 알 수 있었으며 산소소모량은 낙엽, 가지, 수피는 큰 차이는 없는 것으로 나타났으나 함수율이 높은 생엽의 경우 산소소모량이 가장 작게 나타남을 알 수 있었다.

  • PDF

희박 예혼합 덤프 연소기에서 OH 자발광을 이용한 열 방출에 관한 실험적 연구 (Experimental Study on Heat Release in a Lean Premixed Dump Combustor Using OH Chemiluminescence Images)

  • 문건필;이종호;전충환;장영준
    • 대한기계학회논문집B
    • /
    • 제28권11호
    • /
    • pp.1368-1375
    • /
    • 2004
  • Measurements of OH chemiluminescence in an atmospheric pressure, laboratory-scale dump combustor at equivalence ratios ranging from 0.63 to 0.89 were reported. The signal from the first electronically excited state of OH to ground state was detected through a band-pass filter with an ICCD. The objectives of this study are two: One is to see the effects of equivalence ratio on global heat release rate and local Rayleigh index distribution. To get the local Rayleigh index distribution, the line-of-sight images were inverted by tomographic method, such as Abel do-convolution. Another aim is to investigate the validity of using OH chemiluminescence acquired with an ICCD as a qualitative measure of local heat release. For constant inlet velocity and temperature, the overall intensities of OH emission acquired at different equivalence ratio showed periodic and higher value at high equivalence ratio. OH intensity averaged over one period of pressure increased exponentially with equivalence ratio. Local Rayleigh index distribution clearly showed the region of amplifying or damping the combustion instability as equivalence ratio increased. It could provide an information/insights on active control such as secondary fuel injection. Finally, local heat release rate derived from reconstructed OH images were presented fur typical locations.

섬유강화재 함유율에 따른 FRTP의 기계적 특성 및 연소특성에 관한 연구 (A Study on the Mechanical and Combustion Characteristics According to Fiber Reinforcements Weight Fraction of FRTP)

  • 김경진;엄상용;김기환
    • 한국화재소방학회논문지
    • /
    • 제33권3호
    • /
    • pp.21-28
    • /
    • 2019
  • 본 연구에서는 섬유강화 열가소성 플라스틱 복합재료(Fiber Reinforced thermo plastics, FRTP)의 기계적 특성 및 화재 위험성 예측을 위한 연소특성을 평가하였다. 폴리카보네이트와 나일론에 섬유강화재로 유리섬유와 탄소섬유를 각각 0~40 wt% 혼합하여 특성변화를 실험한 결과, 섬유강화재의 함유율이 증가할수록 비강도와 열변형 온도가 증가하였고 난연성은 유리섬유 함유율이 30 wt% 이상인 경우 V-0 등급을 보였다. 연소특성의 경우 섬유강화재의 함유율이 증가함에 따라 착화시간도 비례하여 증가하였으며, 최대 열방출율은 섬유강화재를 40 wt% 함유 시 함유하지 않았을 때보다 폴리카보네이트는 약 51%, 나일론은 약 24% 수준으로 낮아졌다. CO 발생율은 일정시간까지 감소하다가 증가하는 경향을 보이며, 이는 시간이 지남에 따라 불완전연소에 의한 것으로 판단된다. CO2 발생율은 열방출율과 매우 유사한 경향을 보이며, 최대 CO2 발생율은 섬유강화재를 40 wt% 함유 시 함유하지 않았을 때보다 폴리카보네이트는 약 50%, 나일론은 약 28% 수준으로 낮아졌다.

Ultrafine Particle Events in the Ambient Atmosphere in Korea

  • Maskey, Shila;Kim, Jae-Seok;Cho, Hee-Joo;Park, Kihong
    • Asian Journal of Atmospheric Environment
    • /
    • 제6권4호
    • /
    • pp.288-303
    • /
    • 2012
  • In this study, real time measurements of particle number size distribution in urban Gwangju, coastal Taean, and industrial Yeosu in Korea were conducted in 2008 to understand the occurrence of ultrafine particle (UFP) (<100 nm) events, the variation of its concentration among different sampling sites, and UFP formation pathways. Also, to investigate seasonal and long-term variation of the UFP number concentration, data were collected for the period of 5 years (2007, 2008, 2010, 2011, and 2012) in urban Gwangju. Photochemical and combustion events were found to be responsible for the formation of UFP in the urban Gwangju site, whereas only photochemical event led to the formation of UFP in the coastal Taean site. The highest UFP concentration was found in industrial Yeosu (the average UFP number fractions were 79, 59 and 58% in Yeosu, Gwangju, and Taean, respectively), suggesting that high amount of gas pollutants (e.g., $NO_2$, $SO_2$, and volatile organic carbon (VOC)) emitted from industries and their photochemical reaction contributed for the elevated UFP concentration in the industrial Yeosu site. The UFP fraction also showed a seasonal variation with the peak value in spring (61.5, 54.5, 50.5, and 40.7% in spring, fall, summer, and winter, respectively) at urban Gwangju. Annual average UFP number concentrations in urban Gwangju were $5.53{\times}10^3\;cm^{-3}$, $4.68{\times}10^3\;cm^{-3}$, $5.32{\times}10^3\;cm^{-3}$, $3.99{\times}10^3\;cm^{-3}$, and $2.16{\times}10^3\;cm^{-3}$ in the year 2007, 2008, 2010, 2011, and 2012, respectively. Comparison of the annual average UFP number concentration with urban sites in other countries showed that the UFP concentrations of the Korean sites were lower than those in other urban cities, probably due to lower source strength in the current site. TEM/EDS analysis for the size-selected UFPs showed that the UFPs were classified into various types having different chemical species. Carbonaceous particles were observed in both combustion (soot and organics) and photochemical events (sulfate and organics). In the photochemical event, an internal mixture of organic species and ammonium sulfate/bisulfate was identified. Also, internal mixtures of aged Na-rich and organic species, aged Ca-rich particles, and doughnut shaped K-containing particles with elemental composition of a strong C with minor O, S, and K-likely to be originated from biomass burning nearby agricultural area, were observed. In addition, fly ash particles were also observed in the combustion event, not in the photochemical event.

대구지역 공중이용시설의 실내 $\cdot$ 외 공기 중 기준성오염물질의 농도 (Concentrations of Criteria Pollutants in Indoor and Ambient Air of Public Facilities in Taegu Area)

  • 송희봉;민경섭;한개희;김종우;백성옥
    • 한국대기환경학회지
    • /
    • 제12권4호
    • /
    • pp.429-439
    • /
    • 1996
  • A comprehensive air quality monitoring was carried out in this study to investigate the concentrations of criteria air pollutants in indoor and outdoor air of public facilities in Taegu area. Four different kinds of public facilities were seleced as sampling sites, which are underground stores, stations & terminals, general hospitals, and department stores. Each group of the public facilities was consisted of three different sampling sites. As a consequence, a total of 12 different sampling sites were surveyed throughout this study. Sampling was conducted simultaneously indoors, three times per day (in the morning, afternoon, and evening) and four times per year (spring, summer, fall, and winter) at each sampling site during the period of October 1994 to July 1995. A range of criteria pollutants were measured in order to obtain a broad profile of indoor and ambient air quality, including total suspended particles (TSP), carbon monoxide (CO), carbon dioxide ($CO_2$), formaldehyde (HCHO), sulfur dioxide ($SO_2$), and nitrogen dioxide ($NO_2$). In addition, temperature, relative humidity, and air current were measured on site together with those air pollutants. Results of this study indicated that the indoor levels of TSP, CO, $SO_2, and NO_2$ appeared to be generally higher in stations/terminals and underground stores than those in department stores and hospitals. However, HCHO and $CO_2$ were found to have higher levels in the department stores and hospitals than other places, indicating that the effects of indoor sources for these pollutants are significantly different from other combustion related pollutants such as TSP, CO, and $SO_2$. It was also found that there are marked seasonal and daily variations both in indoor and outdoor air quality. In general, combustion related pollutants such as CO, $SO_2$ and $NO_2$ showed a typical pattern of higher levels in winter than insummer, and also higher in the morning and/or in the evening than in the afternoon. However, the seasonal and daily patterns of HCHO appeared to be opposite to the combustion related pollutants, i.e., higher both in summer and in the afternoon, implying the effect of temperature on the volatilization from indoor sources of HCHO. Results of correlation analyses between indoor and outdoor air quality also indicated that the effects of outdoor sources on the indoor levels of TSP, $SO_2$, CO, and $NO_2$ and much significant, whilst no significant correlations between indoor and outdoor levels were found for HCHO and $CO_2$.

  • PDF

착화탄 연소에 의한 가스 중독 환자에서 혈중 중금속 농도의 영향에 대한 예비연구 (Effect on blood heavy metal concentration in gas poisoning by combustion of ignition coal: Pilot study)

  • 이상환;이준철;조용일;고벽성;오재훈;강형구
    • 대한임상독성학회지
    • /
    • 제19권2호
    • /
    • pp.127-132
    • /
    • 2021
  • Purpose: It is known that the most common cause of gas poisoning in Korea is suicide attempts by burning ignition coals. Ignition coals are made from waste wood, and studies have been reported that heavy metals are emitted when this coal is burned. However, there was no study on how much heavy metal poisoning occurs in the human body through this, so this study was planned to find out whether the concentration of heavy metals in the blood increased in patients exposed to ignition coal combustion. Methods: From April 2020 to April 2021, blood lead, mercury, and cadmium concentrations were investigated in carbon monoxide poisoning patients who visited one regional emergency medical center in Seoul, and their association with exposure time, source of poisoning, and rhabdomyolysis were investigated. Results: During the study period, a total of 136 carbon monoxide poisoning patients were tested for heavy metals, and 81 cases of poisoning by ignition coal were reported. When comparing poisoning caused by combustion of ignition coal and other substances, there was no difference in the concentrations of lead, mercury, and cadmium in the blood, and there was no difference in the number of patients above the reference range. However, the patients exposed to more than 5 hours of ignition coal gas exposure are more frequent than those in the group less than 5 hours in lead (51.4% vs. 23.9%, p=0.012). Conclusion: Compared to poisoning with other combustible substances, the blood concentration of lead, mercury, and cadmium does not increase further in patients with gas poisoning by ignition coal. However, prolonged exposure may result in elevated levels of lead.

Comparison of Model-simulated Atmospheric Carbon Dioxide with GOSAT Retrievals

  • Shim, Chang-Sub;Nassar, Ray;Kim, Jhoon
    • Asian Journal of Atmospheric Environment
    • /
    • 제5권4호
    • /
    • pp.263-277
    • /
    • 2011
  • Global atmospheric $CO_2$ distributions were simulated with a chemical transport model (GEOS-Chem) and compared with space-borne observations of $CO_2$ column density by GOSAT from April 2009 to January 2010. The GEOS-Chem model simulated 3-D global atmospheric $CO_2$ at $2^{\circ}{\times}2.5^{\circ}$ horizontal resolution using global $CO_2$ surface sources/sinks as well as 3-D emissions from aviation and the atmospheric oxidation of other carbon species. The seasonal cycle and spatial distribution of GEOS-Chem $CO_2$ columns were generally comparable with GOSAT columns over each continent with a systematic positive bias of ~1.0%. Data from the World Data Center for Greenhouse Gases (WDCGG) from twelve ground stations spanning $90^{\circ}S-82^{\circ}N$ were also compared with the modeled data for the period of 2004-2009 inclusive. The ground-based data show high correlations with the GEOS-Chem simulation ($0.66{\leq}R^2{\leq}0.99$) but the model data have a negative bias of ~1.0%, which is primarily due to the model initial conditions. Together these two comparisons can be used to infer that GOSAT $CO_2$ retrievals underestimate $CO_2$ column concentration by ~2.0%, as demonstrated in recent validation work using other methods. We further estimated individual source/sink contributions to the global atmospheric $CO_2$ budget and trends through 7 tagged $CO_2$ tracers (fossil fuels, ocean exchanges, biomass burning, biofuel burning, net terrestrial exchange, shipping, aviation, and CO oxidation) over 2004-2009. The global $CO_2$ trend over this period (2.1 ppmv/year) has been mainly driven by fossil fuel combustion and cement production (3.2 ppmv/year), reinforcing the fact that rigorous $CO_2$ reductions from human activities are necessary in order to stabilize atmospheric $CO_2$ levels.

XAD 수지에 의한 친수성 및 소수성 수용성 유기탄소의 특성조사 (Study on Characterization of Hydrophilic and Hydrophobic Fractions of Water-soluble Organic Carbon with a XAD Resin)

  • 정재욱;김자현;박승식;문광주;이석조
    • 한국대기환경학회지
    • /
    • 제27권3호
    • /
    • pp.337-346
    • /
    • 2011
  • 24-hr integrated measurements of water-soluble organic carbon (WSOC) in PM2.5 were made between May 5 and September 25, 2010, on a six-day interval basis, at the Metropolitan Area Air Pollution Monitoring Supersite. A macro-porous XAD7HP resin was used to separate hydrophilic and hydrophobic WSOC. Compounds that penetrate the XAD7HP column are referred to hydrophilic WSOC, while those retained by the column are defined as hydrophobic WSOC. Laboratory calibrations using organic standards suggest that hydrophilic WSOC includes lowmolecular aliphatic dicarboxylic acids and carbonyls with less than 4 or 5 carbons, amines, and saccharides. While the hydrophobic WSOC is composed of compounds of aliphatic dicarboxylic acids with carbon numbers larger than 4~5, phenols, aromatic acids, cyclic acid, and humic-like Suwannee River fulvic acid. Over the entire study period, total WSOC accounted for on average 48% of OC, ranging from 32 to 65%, and hydrophilic WSOC accounted for on average 30.5% (9.3~66.7%) of the total WSOC. Based on the previous results, our measurement result suggests that significant amounts of hydrophobic WSOC during the study period were probably from primary combustion sources. However, on June 9 when 1-hr highest ozone concentration of 130 ppb was observed, WSOC to OC was 0.61, driven by increases in the hydrophilic WSOC. This result also suggests that processes, such as secondary organic aerosol formation, produce significant levels of hydrophilic WSOC compounds that add substantially to the fine particle fraction of the organic aerosol.

안면도 대기 중 PM2.5 내 n-alkanes의 월별 농도 분포 특성 (Monthly Variation of n-alkanes concentration in PM2.5 of the Anmyeon Island)

  • 김기애;이종식;김은실;정창훈;김용표;이지이
    • 한국대기환경학회지
    • /
    • 제34권1호
    • /
    • pp.166-176
    • /
    • 2018
  • The n-alkanes which are stable compounds in the atmosphere are emitted by anthropogenic sources and biological sources. The goal of this study is to understand characteristics of n-alkane distributions in $PM_{2.5}$ of the Anmyeon Island which is one of background site in Korea. The concentration of n-alkanes in $PM_{2.5}$ was measured at Anmyeon Island for one year from June 2015 to May 2016. The average concentration of total n-alkanes (${\sum}$ n-alkanes) from C20 to C34 was $14.02{\pm}10.26ng\;m^{-3}$ and ranged from 1.77 to $47.65ng\;m^{-3}$. Various diagnostic parameters were used to identify the source. As a result, it is considered that Anmyeon Island had a large influence of biological sources during non-heating period, while the influence of anthropogenic emission during the heating period was significant. Principle Component Analysis (PCA) was performed and yielded three components that accounted for 93.6% of the total variance in n-alkanes. Factor 1, which accounted for 42.3% of the total variance, indicated anthropogenic source including fossil fuel and biomass combustion, while, Factor 3 was interpreted as the biological sources such as plant wax.

서울과 인천지역 PM10 과 PM2.5 중 2차생성 탄소성분 추정 (The Characteristics of Secondary Carbonaceous Species within PM10 and PM2.5 in Seoul and Incheon Area)

  • 박진수;김신도
    • 한국대기환경학회지
    • /
    • 제21권1호
    • /
    • pp.131-140
    • /
    • 2005
  • To investigate secondary carbonaceous species within PM$_{10}$ and PM$_{2.5}$ in Seoul urban Metropolitan Area (SMA), Korea. atmospheric particulate matters samples were collected at two sites of SMA at UOS (The University Of Seoul station) sites and IHU (InHa University of Incheon station) during the period of 4 to 14 January and 12 to 22 May, 11 to 15 August 2004, and their characteristics were qualitatively discussed. during January and May and August of 2004. Daily average mass concentration 0.095 mg/㎥ in PM$_{10}$ and 0.053 mg/㎥ in PM$_{2.5}$ for mass respectively. were observed in SMA. The concentrations of carbonaceous species contributed 18.4% and 16.4% of PM$_{2.5}$ and PM$_{10}$ during the sampling period, respectively, of which OC accounted for 68% and 52% more of the total carbon (TC). OC and EC concentrations and their mass percentages were higher in PM$_{2.5}$ than in PM$_{10}$ which could be attributed to generation process. Organic aerosols would constitute up to 38% of PM$_{2.5}$ based on the evaluation of 1.6 for the ratio of OC to organic particulate. Secondary organic carbon (SOC) were estimated to be more than 13% and up to 68% of total OC based on the minimum OC/EC ratio of 1.06/1.11 using least square method. Comparisons of OC and EC with trace elements. As results of carbonaceous species analysis, the dominant factor in view of fine particle (PM$_{10}$/PM$_{2.5}$) is primary emission source such as mobile, fossil fuel combustion etc. during winter time in SMA. But in summer periods, remarkable fine particle increasing factor was secondary organic carbon dependent to photochemical reaction. reaction.n. reaction.