• Title/Summary/Keyword: Combustion heat

Search Result 1,725, Processing Time 0.025 seconds

A Study on the Toxicity Analysis of Combustion Gases of Architectural Surface Materials and Architectural Adhesives (건축용 외장재와 접착제 연소가스의 독성분석에 관한 연구)

  • Kim, Won-Jong;Park, Young-Ju;Lee, Hae-Pyeong;Lim, Suk-Hwan;Kim, Jung-In
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.48-52
    • /
    • 2013
  • This study was carried out, using toxicity test apparatus, to analyze toxic gases of heat insulation material and adhesives of composite panels used for the architectural surface material when a fire occurs. The findings of this study show that CO, $CO_2$, HCOH, $CH_2CHCN$ and $NO_x$ were detected from styrofoam, reinforced styrofoam, polyurethane foam and glass fiber, but in the case of the polyurethane foam, HCl and HCN were detected as well. All the architectural adhesives released CO, $CO_2$ and $NO_x$, but HCHO was only detected from the adhesives for styrofoam, wood, tile, windows and doors; $CH_2CHCN$ was only from those for wood and stone; $C_6H_5OH$ was only from those for wood. The toxicity index was also measured for architectural surface material and adhesives. Polyurethane foam showed the highest index, 11.7, and glass fiber was followed as 6.8. Reinforced styrofoam showed 5.7 and styrofoam revealed the least 4.9. In the case of architectural adhesives, the highest ranking was those for stone 7.4, windows and doors 6.1, wood 5.3, tile 3.8, and styrofoam 3.7 were followed, respectively.

A Numerical Study on Various Energy and Environmental System (II) (에너지${\cdot}$환경 제반 시스템에 관한 수치해석적 연구(II))

  • Jang D. S.;Park B. S.;Kim B. S.;Lee E. J.;Song W. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.58-67
    • /
    • 1996
  • This paper describes some computational results of various energy and environmental systems using Patankar's SIMPLE method. The specific topics handled in this study are jet bubbling reactor for flue gas desulfurization, cyclone-type afterburner for incineration, 200m tall stack for 500 MW electric power generation, double skin and heat storage systems of building energy saving for the utilization of solar heating, finally turbulent combustion systems with liquid droplet or pulverized coal particle. A control-volume based finite-difference method with the power-law scheme is employed for discretization. The pressure-velocity coupling is resolved by the use of the revised version of SIMPLE, that is, SIMPLEC. Reynolds stresses are closed using the standard $k-{\varepsilon}$ and RNG $k-{\varepsilon}$ models. Two-phase turbulent combustion of liquid drop or pulverized coal particle is modeled using locally-homogeneous, gas-phase, eddy breakup model. However simple approximate models are incorporated for the modeling of the second phase slip and retardation of ignition without consideration of any detailed particle behavior. Some important results are presented and discussed in a brief note. Especially, in order to make uniform exit flow for the jet bubbling reactor, a well-designed structure of distributor is needed. Further, the aspect ratio in the double skin system appears to be one of important factors to give rise to the visible change of the induced air flow rate. The computational tool employed in this study, in general, appears as a viable method for the design of various engineering system of interest.

  • PDF

Design, Analysis and Experiment of Potato Gun with a Spherical Projectile (구형 탄환을 이용한 감자총의 설계, 해석 및 시험)

  • Kang, Hong-Jae;Kim, Ji-Hwan;Kim, Young-Sik;Son, So-Eun;Choi, Han-Ul;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.796-804
    • /
    • 2013
  • The "Potato Gun," a simple heat engine, is fabricated, tested and analyzed as a part of engineering education program of combustion and propulsion classes. Combustor pressure is predicted by the chemical equilibrium analysis of a constant volume combustor. Then, the internal ballistics, the conversion of thermal energy into the mechanical energy of a projectile, is predicted though the expansion process. The trajectory of a projectile is estimated by considering the aerodynamic effect around the spherical projectile. The energy conversion efficiency and the equivalence ratio of the fuel-air mixture could be estimated by the comparison of the experimental results and the theoretical prediction. The present work would be an example of attracting the interest of students for the application of the engineering principles at undergraduate level by recycling the waste materials.

A Study on Flame Structure and NO Emission in FIR- and FGR-applied Methane-air Counterflow Diffusion Flames (FIR과 FGR 기법이 적용된 메탄-공기 대향류 확산화염에서 화염구조와 NO 배출 연구)

  • Park, Jeong;Kwon, Oh Boong;Kim, Sewon;Lee, Changyeop;Keel, Sang-In;Yun, Jin-Han;Lim, In Gweon
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.1
    • /
    • pp.38-45
    • /
    • 2016
  • Flame characteristics and NO emission behavior in $CH_4$/air-air premixed counterflow flames with applying FIR and FGR with $CO_2$ and $H_2O$ were investigated numerically by varying the ratios of FIR and FGR as well as global strain rate. Chemical effects of added $CO_2$ and $H_2O$ via FIR and FGR were analyzed through comparing flame characteristics and NO behaviors from real species($CO_2$ and $H_2O$) with those from their artificial species($XCO_2$ and $XH_2O$) which have the same thermochemical, radiative, and transport properties to those for the real species. The results showed that flame temperature and NO emission with FIR varied much more sensitively than that with FGR. Those varied little irrespective of adding $CO_2$, $H_2O$, and their artificial species to the fuel stream via FIR. However, Those were varied complicatedly by chemical effects of added $CO_2$ and $H_2O$ via FGR. Detailed analyses for them were made and discussed.

Combustion Characteristics of Premixed Burner for Fuel Reformer (개질기용 예혼합 연소장치의 연소특성 연구)

  • Lee, Pil-Hyong;Lee, Jae-Young;Han, Sang-Seok;Park, Chang-Soo;Hwang, Sang-Soon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2181-2185
    • /
    • 2008
  • Fuel processing systems which convert HC fuel into $H_2$ rich gas (such as stream reforming, partial oxidation, auto-thermal reforming) need high temperature environment($600-1000^{\circ}C$). Generally, anode-off gas or mixture of anode-off gas and LNG is used as input gas of fuel reformer. In order to make efficient and low emission burner system for fuel reformer, it is necessary to elucidate the combustion and emission characteristic of fuel reformer burner. The purpose of this study is to develop a porous premixed flat ceramic burner that can be used for 1-5kW fuel cell reformer. Ceramic burner experiments using natural gas, hydrogen gas, anode off gas were carried out respectively to investigate the flame characteristics by heating capacity and equivalence ratio. Results show that the stable flat flames can be established for natural gas, hydrogen gas, anode off gas and mixture of natural & anode off gas as reformer fuel. For all of fuels, their burning velocities become smaller as the equivalence ratio goes to the lean mixture ratio, and a lift-off occurs at lean limit. Flame length in hydrogen and anode off gas became longer with increasing the heat capacity.

  • PDF

Use of Adaptive Meshes in Simulation of Combustion Phenomena

  • Yi, Sang-Chul;Koo, Sang-Man
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06b
    • /
    • pp.285-309
    • /
    • 1996
  • Non oxide ceramics such as nitrides of transition metals have shown significant potential for future economic impact, in diverse applications in ceramic, aerospace and electronic industries, as refractory products, abrasives and cutting tools, aircraft components, and semi-conductor substrates amid others. Combustion synthesis has become an attractive alternative to the conventional furnace technology to produce these materials cheaply, faster and at a higher level of purity. However he process os highly exothermic and manifests complex dynamics due to its strongly non-linear nature. In order to develop an understanding of this process and to study the effect of operational parameters on the final outcome, numerical modeling is necessary, which would generated essential knowledge to help scale-up the process. the model is based on a system of parabolic-hyperbolic partial differential equations representing the heat, mass and momentum conservation relations. The model also takes into account structural change due to sintering and volumetric expansion, and their effect on the transport properties of the system. The solutions of these equations exhibit steep moving spatial gradients in the form of reaction fronts, propagating in space with variable velocity, which gives rise to varying time scales. To cope with the possibility of extremely abrupt changes in the values of the solution over very short distances, adaptive mesh techniques can be applied to resolve the high activity regions by ordering grid points in appropriate places. To avoid a control volume formulation of the solution of partial differential equations, a simple orthogonal, adaptive-mesh technique is employed. This involves separate adaptation in the x and y directions. Through simple analysis and numerical examples, the adaptive mesh is shown to give significant increase in accuracy in the computations.

  • PDF

COMBUSTION CHARACTERISTICS OF A MICRO-SOLID PROPELLANT ROCKET ARRAY THRUSTER

  • Kazuyuki Kondo;Shuji Tanaka;Hiroto Habu;Tokudome, Shin-ichiro;Keiichi Hori;Hirobumi Saito;Akihito Itoh;Masashi Watanabe;Masayoshi Esashi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.593-596
    • /
    • 2004
  • We are developing a micro-solid propellant rocket array thruster for simple attitude control of a 10 kg class micro-spacecraft. The prototype has ø 0.8 mm solid propellant micro-rockets arrayed at a pitch of 1.2 mm on a 22 x 22 mm substrate. In previous studies, an impulse thrust of 4.6 x 10$^{-4}$ Ns was obtained in vacuum, but we found the problems of unacceptably low ignition success rate and incomplete combustion. This paper describes experiments to improve the ignition rate. In order to achieve this goal, we tried to solidify paste-like ignition aid (RK) on the ignition heaters with strong adhesion. To make the paste-like RK, isoamyl acetate was added to RK powder. We tested 9 rockets, but only 2 rockets were ignited with huge ignition energy. This is because the heat con-duction between the ignition heater and the RK was too low to ignite the RK, since dried RK had a lot of pores. Also, a large cavity was sometimes found just above the ignition heater.

  • PDF

Regenerative Cooling Characteristics for Cooling Parameters of a Combustor in Liquid Rocket Combustors (재생냉각 연소기의 냉각기구에 따른 냉각 특성 파악)

  • Kim, Hong-Jip;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.145-149
    • /
    • 2010
  • Thermal analyses have been performed to study the effect of location of fuel ring and thermal barrier coatings in regenerative cooling channels in a full-scale combustor. For the effective cooling, the fuel ring has better be installed near axial location of the low expansion ratio and low heat flux, and branching of cooling channels is preferable. Also, the radiative cooled nozzle extension is thought to be reasonable for the cooling of combustion walls. Among the possible coatings, $Y_2O_3$ stabilized $ZrO_2$ coating and Ni/Cr coating have been adopted. Compared with Ni/Cr coating which has high oxidation resistance, $Y_2O_3$ stabilized $ZrO_2$ coating, one of ceramic coatings is found to be much effective to sustain the thermal survivability of combustion walls.

  • PDF

A Characteristics on Temperature Change of Warm Needle's Body Depended on Moxa-Corn Weights (애주 무게별 온침의 침체간부 온도 변화 특성 연구)

  • Ahn, Seong-Hun;Hong, Deok;Kwon, Oh-Sang;Kim, Yu-Lee;Kim, Jae-Hyo;Sohn, In-Chul
    • Korean Journal of Acupuncture
    • /
    • v.27 no.2
    • /
    • pp.71-78
    • /
    • 2010
  • Objectives : The warm needling technique is a combination of acupuncture and moxibustion. The purpose of this study was to find the physical and thermal characteristics in order to identify the effects and mechanisms of the warm needling technique. Methods : In this study, the thermal changes were observed with a testo 845 device, which is an infra-red thermometer specifically designed for measuring a combustion of corn shaped moxibustion(moxa-corn). The thermal changes at the apex of the moxa-corn placed on the top of the an acupuncture were observed at the level of 1 cm and 2 cm from the apex to understand heat conduction through acupuncture needle for combustion of moxa-corn. Results and Conclusions : The thermal conduction through acupuncture needle from the moxa-corn was relative to the weight of moxa-corn and was inversely relative to the distance of the moxa-corn and acupuncture needle length. And the value of thermal conduction to the apex of the acupuncture needle from the moxa-corn was about $3{\sim}5^{\circ}C$. The above results suggest that the present study may be useful in finding the mechanism and effects of the warming needling technique.

A Study on the Effects of Hydrogen Addition and Swirl Intensity in CH4-Air Premixed Swriling Flames (메탄-공기 예혼합 선회화염에서 수소첨가와 선회강도 영향에 관한 연구)

  • KIM, HAN SEOK;CHO, JU HYEONG;KIM, MIN KUK;HWANG, JEONGJAE;LEE, WON JUNE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.593-600
    • /
    • 2019
  • The combustion characteristics of methane/hydrogen pre-mixed flame have been investigated with swirl stabilized flame in a laboratory-scale pre-mixed combustor with constant heat load of 5.81 kW. Hydrogen/methane fuel and air were mixed in a pre-mixer and introduced to the combustor through a burner nozzle with different degrees of swirl angle. The effects of hydrogen addition and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using particle image velocimetry (PIV), micro-thermocouples, various optical interference filters and gas analyzers to provide information about flow velocity, temperature distributions, and species concentrations of the reaction field. The results show that higher swirl intensity creates more recirculation flow, which reduces the temperature of the reaction zone and, consequently, reduces the thermal NO production. The distributions of flame radicals (OH, CH, C2) are dependent more on the swirl intensity than the percentage of hydrogen added to methane fuel. The NO concentration at the upper part of the reaction zone is increased with an increase in hydrogen content in the fuel mixture because higher combustibility of hydrogen assists to promote faster chemical reaction, enabling more expansion of the gases at the upper part of the reaction zone, which reduces the recirculation flow. The CO concentration in the reaction zone is reduced with an increase in hydrogen content because the amount of C content is relatively decreased.