DOI QR코드

DOI QR Code

A Study on Flame Structure and NO Emission in FIR- and FGR-applied Methane-air Counterflow Diffusion Flames

FIR과 FGR 기법이 적용된 메탄-공기 대향류 확산화염에서 화염구조와 NO 배출 연구

  • Park, Jeong (Dep. of Mechanical Engineering, Pukyoung Nat'l University) ;
  • Kwon, Oh Boong (Dep. of Mechanical Engineering, Pukyoung Nat'l University) ;
  • Kim, Sewon (Thermochemical Energy System Group, Korea Institute of Industrial Technology) ;
  • Lee, Changyeop (Thermochemical Energy System Group, Korea Institute of Industrial Technology) ;
  • Keel, Sang-In (Environment & Energy Research Division, Korea Institute of Machinery and Materials) ;
  • Yun, Jin-Han (Environment & Energy Research Division, Korea Institute of Machinery and Materials) ;
  • Lim, In Gweon (Dept. of Mechanical Engineering, Myongji University)
  • 박정 (부경대학교 기계공학과) ;
  • 권오붕 (부경대학교 기계공학과) ;
  • 김세원 (한국생산기술연구원 고온에너지시스템그룹) ;
  • 이창엽 (한국생산기술연구원 고온에너지시스템그룹) ;
  • 길상인 (한국기계연구원 환경에너지기계시스템연구부) ;
  • 윤진한 (한국기계연구원 환경에너지기계시스템연구부) ;
  • 임인권 (명지대학교 기계공학과)
  • Received : 2016.02.04
  • Accepted : 2016.02.25
  • Published : 2016.03.30

Abstract

Flame characteristics and NO emission behavior in $CH_4$/air-air premixed counterflow flames with applying FIR and FGR with $CO_2$ and $H_2O$ were investigated numerically by varying the ratios of FIR and FGR as well as global strain rate. Chemical effects of added $CO_2$ and $H_2O$ via FIR and FGR were analyzed through comparing flame characteristics and NO behaviors from real species($CO_2$ and $H_2O$) with those from their artificial species($XCO_2$ and $XH_2O$) which have the same thermochemical, radiative, and transport properties to those for the real species. The results showed that flame temperature and NO emission with FIR varied much more sensitively than that with FGR. Those varied little irrespective of adding $CO_2$, $H_2O$, and their artificial species to the fuel stream via FIR. However, Those were varied complicatedly by chemical effects of added $CO_2$ and $H_2O$ via FGR. Detailed analyses for them were made and discussed.

Keywords

References

  1. S. C. Li, F. A. Williams. NOx formation in twostage methane-air flames. Combust Flame 118 (1999) pp.399-414. https://doi.org/10.1016/S0010-2180(99)00002-4
  2. J. Park, K. T. Kim, J. S. Park, J. S. Kim, S. C. Kim, T. K. Kim. A Study on $H_2$-Air counterflow flames in highly preheated air diluted with $CO_2$. Energy & Fuel 19 (2005) pp.2254-2260. https://doi.org/10.1021/ef050152l
  3. J. Park, S. I. Keel, J. H. Yun, T. K. Kim. Effects of addition of electrolysis products in methaneair diffusion flames. Int. J. Hydrogen Energy 32 (2007) pp.4059-4070. https://doi.org/10.1016/j.ijhydene.2007.05.024
  4. J. Park, J. S. Kim, J. O. Chung, J. H. Yun, S. I. Keel. Chemical effects on added $CO_2$ on the extinction characteristics of $H_2/CO/CO_2$ syngas diffusion flames. Int. J. Hydrogen Energy 34 (2009) pp.8756-8762. https://doi.org/10.1016/j.ijhydene.2009.08.046
  5. T. M. Vu, J. Park, O. B. Kwon, Bae DS, J. H. Yun, S. I. Keel. Effects of Diluents on Cellular Instabilites in Outwardly Propagating Spherical Syngas-Air Premixed Flames. Int. J. Hydrogen Energy 35 (2010) pp.3868-3880. https://doi.org/10.1016/j.ijhydene.2010.01.091
  6. S. W. Jung, J. Park, O. B. Kwon, Y. J. Kim, S. I. Keel, J. H. Yun, I. G. Lim. Effects of $CO_2$ addition on flame extinction in interacting $H_2$-air and CO-air premixed flames. Fuel 136 (2014) pp.69-78. https://doi.org/10.1016/j.fuel.2014.07.009
  7. J. Park, D. J. Hwang, K. T. Kim, S. B. Lee, S. I. Keel. Evaluation of chemical effects of added $CO_2$ according to flame location. Int. J. Energy Res. 28 (2004) pp.551-565. https://doi.org/10.1002/er.984
  8. R. J. Kee, J. A. Miller, G. H. Evans, G. Dixon- Lewis. A computational model of the structure and extinction of strained, opposed flow, premixed methane-are flame, Proc Combust Inst 22 (1988), pp.1479 -1494.
  9. A. E. Lutz, R. J. Kee, J. F. Grcar, F. M. Rupley. A fortran program for computing opposed-flow diffusion flames, Sandia National Laboratories Report. SAND 96-8243 (1997).
  10. Y. Ju, H. Guo, K. Maruta, F. Liu. On the extinction limit and flammability limit of non-adiabatic stretched methane-air premixed flames, J Fluid Mech, 342 (1997), p.315. https://doi.org/10.1017/S0022112097005636
  11. R. J. Kee, F. M. Rupley, J. A. Miller, Chemkin II: a fortran chemical kinetics package for analysis of gas phase chemical kinetics, Sandia National Laboratories Report. SAND 89-8009B (1989).
  12. R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, J. A. Miller, A fortran computer code package for the evaluation of gas-phase multi-component transport. Sandia National Laboratories Report. SAND86-8246 (1994).
  13. Y.H. Chung, D.G. Park, J.H. Yun, J. Park, O.B. Kwon, S.I. Keel. Role of outer edge flame on flame extinction in nitrogen-diluted nonpremixed counterflow flames with finite burner diameters. Fuel, 205 (2013) 540-550.
  14. C.K. Westbrook, F.L. Dryer. Chemical kinetics modeling of hydrocarbon combustion. Prog Energy Combust Sci, 10 (1984), p.1 https://doi.org/10.1016/0360-1285(84)90118-7
  15. S.G. Kim, J. Park, and S.I. Keel. Thermal and chemical contribution of added $H_2O$ and $CO_2$ to major flame structures and NO emission characteristics in $H_2/N_2$ laminar diffusion flame. Int. J. Energy Res. 26 (2002) 1073-1086. https://doi.org/10.1002/er.837
  16. W.J. Lee, J. Park, O.B. Kwon, J.H. Yun, S.I. Keel (2015). Heat-loss-induced Self-excitation in Laminar Lifted Coflow-jet Flames. Proc. Combust. Inst. 35 (2015) 1007-1014.
  17. M. Nishioka, S. Nakagawa, T. Takeno. NO emission characteristics of methane-air double flame. Combust Flame, 98 (1994), 127-138. https://doi.org/10.1016/0010-2180(94)90203-8

Cited by

  1. 대향류 화염에서 FGR이 적용된 저공해 연소의 수치적 해석: Part I. 저 NOx 연소특성 vol.23, pp.6, 2016, https://doi.org/10.7842/kigas.2019.23.6.8