• Title/Summary/Keyword: Combustion Stability

Search Result 573, Processing Time 0.029 seconds

Combustion Characteristic and Stability of Flat Premixed Ceramic Burner with Different Porous Baffle Plates (평판 예혼합 세라믹 버너의 분포판 변화에 따른 연소화염특성과 안정성 분석)

  • Lee, Jae-Young;Lee, Pil-Hyong;Park, Chang-Soo;Park, Bong-Il;Hwang, Sang-Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.4
    • /
    • pp.7-16
    • /
    • 2009
  • Porous metal plates (Metal fiber, muti-hole metal plate) using mainly in surface burner are known to have a corrosion and durability problem under high temperature condition. In this study, premixed flat flame with perforated ceramic tile of more durable cordierite material was examined with respect to combustion stability and emission. The flat premixed ceramic burner consists of perforated ceramic tile and various type of baffle plates to form stable surface flame. The results show that most stable flat flame is generated using baffle plate with open ratio of 0.193. In downward flat flame mode which is widely used in condensing boiler, CO is measured below 50ppm from equivalence ratio 0.755 to 0.765 and $NO_X$ is measured below 12ppm from equivalence ratio 0.75 to 0.79. It is also found that the range of blue flame in flame stability curve becomes wider with increasing heat capacity.

  • PDF

Effects of Microwave Induction on the Liftoff and NOx Emission in Methane Micro Jet Flames (메탄 마이크로 제트화염의 부상과 NOx 배출에 대한 마이크로파 효과)

  • Jeon, Young Hoon;Lee, Eui Ju
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.2
    • /
    • pp.22-28
    • /
    • 2016
  • High efficient and environment friendly combustion technologies are used to be operated an extreme condition, which results in unintended flame instability such as extinction and oscillation. The use of electromagnetic energy is one of methods to enhance the combustion stability and a microwave as electromagnetic wave is receiving increased attention recently because of its high performance and low-cost system. In this study, an experiment was performed with jet diffusion flames induced by microwave. Micro jet was introduced to simulate the high velocity of industrial combustor. The results show that micro jet flames had three different modes with increasing oxidizer velocity; attached yellow flame, lifted flame, and lifted partially premixed flame. As a microwave was induced to flames, the overall flame stability and blowout limit were extended with the higher microwave power. Especially the interaction between a flame and a microwave was shown clearly in the partially premixed flame, in which the lift-off height decreased and NOx emission measured in post flame region increased with increasing microwave power. It might be attributed to increase of reactivity due to the abundance of radical pool and the enhanced absorption to thermal energy.

Study on Combustion Stability and Flame Structure of Injectors Through Subscale Combustion Tests (모델 연소시험을 통한 분사기 연소안정성과 화염구조에 대한 연구)

  • Song Ju-Young;Lee Kwang-Jin;Seo Seonghyeon;Han Yeoung-Min;Seol Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.245-250
    • /
    • 2004
  • The objective of the present study is to conduct model combustion tests for various injectors to identify their combustion stability characteristics. Three different double swirl coaxial injectors with variation of a recess number have been tested for the comparative study of stability characteristic and flame structure. Gaseous oxygen and mixture of gaseous methane and propane have been employed for simulating actual propellants used for a fullscale thrust chamber. Upon test results, the direct comparison between various types of injectors can be realized for the selection of the best design among prospective injectors.

  • PDF

Experimental Study for Oxygen Methane MILD Combustion in a Laboratory Scale Furnace (Laboratory Scale 연소로를 적용한 산소 메탄 MILD 연소에 대한 실험적 연구)

  • Lee, Pil Hyong;Hwang, Sang Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.4
    • /
    • pp.6-15
    • /
    • 2016
  • The oxygen fuel MILD (Moderate or Intense Low-oxygen Dilution) combustion has been considered as one of the promising combustion technology for flame stability, high thermal efficiency, low emissions and improved productivity. In this paper, the effect of oxygen and fuel injection condition on formation of MILD combustion was analyzed using lab scale oxygen fuel MILD combustion furnace. The results show that the flame mode was changed from a diffusion flame mode to a split flame mode via a MILD combustion flame mode with increasing the oxygen flow rate. A high degree of temperature uniformity was achieved using optimized combination of fuel and oxygen injection configuration without the need for external oxygen preheating. In particular, the MILD combustion flame was found to be very stable and constant flame temperature region at 7 KW heating rate and oxygen flow rate 75-80 l/min.

INFLUENCE OF INITIAL COMBUSTION IN SI ENGINE ON FOLLOWING COMBUSTION STAGE AND CYCLE-BY-CYCLE VARIATIONS IN COMBUSTION PROCESS

  • Lee, Kyung-Hwan;Kim, Kisung
    • International Journal of Automotive Technology
    • /
    • v.2 no.1
    • /
    • pp.25-31
    • /
    • 2001
  • It is necessary to understand the combustion process and cycle-by-cycle variation in combustion to improve the engine stability and consequently to improve the fuel economy and exhaust emissions. The pressure related parameters instead of mass fraction burned were compared for the effect of initial combustion pressures on the following combustion and the analysis of cycle-by-cycle variation in combustion for two pen injected SI engines. The correlation between IMEP and pressures at referenced crank angles showed almost the same trends for equivalence ratios, but the different mixture preparations indicated different tendency. The dependency of IMEP on pressure at the referenced crank angles increases as the mixture becomes leaner for both engines. The mixture distribution in the combustion chamber was varied with the coolant temperature and intake valve deactivation due to the evaporation of fuel and air motion. The correlation between pressure related parameters were also compared for the coolant temperatures and air motion.

  • PDF

Basic Study on the Flame Stability of Burner for Regeneration of Diesel Particulate Filter in Engine Exhaust Gas (DPF 재생용 버너의 엔진 배기 중에서의 화염 안정성 구현을 위한 기초 연구)

  • Shim, Sung-Hoon;Jeong, Sang-Hyun;Hong, Won-Seok
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.4
    • /
    • pp.10-17
    • /
    • 2005
  • Sustaining of flame stability of the burner installed in Dielsel exhaust pipe is very difficult because of steep fluctuation of pressure and flow rate. A burner for DPF (Diesel Particulate Filter) which clogged by collected soot regeneration has been made of metal fiber for the purpose of realization of flame stability even in unfavorable condition of Diesel engine exhaust. Flame stability of the metal fiber burner has been investigated in various condition of engine operation. It has been identified that metal fiber burner with liner which has swirl guide vane presents excellent flame stability even in the higher engine revolutions than 3000rpm and sudden variation. The results offer the possibility of development of full flow burner system for DPF regeneration.

  • PDF

Combustion Stability Rating Test under Low Pressure Condition of a 75-tonf-class LRE Thrust Chamber (75톤급 액체로켓엔진 연소기의 저압 조건에서 수행된 연소안정성 시험)

  • Lee, Kwang-Jin;Kang, Dong-Hyuk;Kim, Mun-Ki;Ahn, Kyu-Bok;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.92-100
    • /
    • 2010
  • Combustion stability rating tests of 75-tonf-class thrust chamber for technology demonstration were carried out at a low pressure. Two kinds of mixing heads were used in this study. One of them has injectors of 631 and the other has injectors of 721. Mixing head with injectors of 631 showed a self-oscillation instability at the chamber pressure of 30 bar. Mixing head with injectors of 721 showed that a high frequency combustion stability was maintained under the same pressure and the same mass flow rate. But mixing head with injectors of 721 generated a self-oscillation instability at the chamber pressure of 20 bar and it was found that stability boundary region was changed due to the configuration of a mixing head from these results.

Effects of Pressure Variation on the Combustion Characteristics of a Gaseous CH4/O2 Bipropellant in a Model Combustor (모델연소실 내 압력 변화가 메탄/산소 이원추진제의 연소특성에 미치는 영향)

  • Choi, Sun;Kim, Tae Young;Kim, Hee Kyung;Koo, Jaye;Kwon, Oh Chae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.63-71
    • /
    • 2017
  • Liquid methane ($CH_4$)/oxygen ($O_2$) bipropellants have been recently considered as a next-generation propellant due to eco-friendly and non-toxic properties, low cost and high performance. In this study, the combustion characteristics of gaseous $CH_4/O_2$ nonpremixed coflow flames in a model combustor with variation of internal pressure are investigated through measuring the combustion stability limits and visualizing flames. Results show that the combustion stability limits are extended and the reaction region is widened with increasing internal pressure of the combustion chamber for fuel-rich condition.

Combustion Instability Mechanism of a Lean Premixed Gas Turbine Combustor

  • Seo, Seonghyeon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.906-913
    • /
    • 2003
  • Lean premixed combustion has been considered as one of the promising solutions for the reduction of NOx emissions from gas turbines. However, unstable combustion of lean premixed flow becomes a real challenge on the way to design a reliable, highly efficient dry low NOx gas turbine combustor. Contrary to a conventional diffusion type combustion system, characteristics of premixed combustion significantly depend on a premixing degree of combusting flow. Combustion behavior in terms of stability has been studied in a model gas turbine combustor burning natural gas and air. Incompleteness of premixing is identified as significant perturbation source for inducing unstable combustion. Application of a simple convection time lag theory can only predict instability modes but cannot determine whether instability occurs or not. Low frequency perturbations are observed at the onset of instability and believed to initiate the coupling between heat release rate and pressure fluctuations.

A Study on the Characteristics of combustion in a combustion chamber by port deactivation valve (PDA 밸브에 의한 연소실내의 연소특성에 관한 연구)

  • 김대열;한영출;조재명;김양술;주신혁;박병완
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.242-247
    • /
    • 2003
  • An experimental study presents characteristics of combustion in a combustion chamber by port deactivation valve for economy and emissions standards. In order to use combustion properties data it is necessary to build some data base, which use cylinder pressure sensor, etc. Port deactivation valve has been developed to satisfy requirement of achieving sufficient swirl generation to improve the combustion. A feasibility and necessity of combustion pressure based cylinder spark timing control has been examined. So, this was obtained the Coefficient of Variation(COV) and the mass-burned(MFB). The characteristics of pressure ratio fraction is similar to that of mass-burned fraction. Using the results of the test, the effects of the combustion chamber can be improved combustion stability by port deactivation.

  • PDF