Browse > Article
http://dx.doi.org/10.15231/jksc.2016.21.2.022

Effects of Microwave Induction on the Liftoff and NOx Emission in Methane Micro Jet Flames  

Jeon, Young Hoon (Department of Safety Engineering, Pukyoung National University)
Lee, Eui Ju (Department of Safety Engineering, Pukyoung National University)
Publication Information
Journal of the Korean Society of Combustion / v.21, no.2, 2016 , pp. 22-28 More about this Journal
Abstract
High efficient and environment friendly combustion technologies are used to be operated an extreme condition, which results in unintended flame instability such as extinction and oscillation. The use of electromagnetic energy is one of methods to enhance the combustion stability and a microwave as electromagnetic wave is receiving increased attention recently because of its high performance and low-cost system. In this study, an experiment was performed with jet diffusion flames induced by microwave. Micro jet was introduced to simulate the high velocity of industrial combustor. The results show that micro jet flames had three different modes with increasing oxidizer velocity; attached yellow flame, lifted flame, and lifted partially premixed flame. As a microwave was induced to flames, the overall flame stability and blowout limit were extended with the higher microwave power. Especially the interaction between a flame and a microwave was shown clearly in the partially premixed flame, in which the lift-off height decreased and NOx emission measured in post flame region increased with increasing microwave power. It might be attributed to increase of reactivity due to the abundance of radical pool and the enhanced absorption to thermal energy.
Keywords
Micro jet diffusion flame; Microwave; Flame stability; NOx emission; Lift-off height;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 F.J. Weinberg, K. Hom, A. K. Oppenheim, K. Teichman, "Ignition by plasma jet", Nature Vol. 272, No. 5651, 1978, pp. 341-343.   DOI
2 P. Fauchais, A. Vardelle, "Thermal plasmas", IEEE Trans. Plasma Sci., Vol. 25, No. 6, 1997, pp. 1258-1280.   DOI
3 S. M. Starikovskaia, "Plasma assisted ignition and combustion", J. Phy. D: Appl. Phys., Vol. 39, 2006, pp. 265-299.   DOI
4 X. Raoa, K. Hemawanb, I. Wichmana, C. Carterc, T. Grotjohnb, J. Asmussenb, T. Leea, "Combustion dynamics for energetically enhanced flames using direct microwave energy coupling", Proceedings of the Combustion Institute, Vol. 33, 2011, pp. 3233-3240.   DOI
5 S. Ogawa, Y. Sakai, K. Sato, S. Sega, "Influence of microwave on methane-air laminar flames", Jpn. J. Appl. Phys., Vol. 37, No. 1, 1998, pp. 179-185.   DOI
6 K. Takita, G. Masuya, T. Sato, Y. Ju, "Effect of addition of radicals on burning velocity", AIAA J., Vol. 39, No. 4, 2001, pp 742-744.   DOI
7 K. W. Hemawan, I. S. Wichman, T. Lee, T. A. Grotjohn, J. Asmussen, "Compact microwave reentrant cavity applicator for plasma-assisted combustion", Rev. Sci. Instrum., Vol. 80, No. 5, 2009, 053507.   DOI
8 Y. C. Hong, S. C. Cho, C. U. Bang, D. H. Shin, J. H. Kim, H. S. Uhm, W. J. Yi, "Microwave plasma burner and temperature measurements in its flame", Appl. Phys. Lett., Vol. 88, No. 20, 2006, pp. 201502-201504.   DOI
9 E. S. Stockmana, S. H. Zaidia, R. B. Milesa, C. D. Carterb, M. D. Ryanc, "Measurements of combustion properties in a microwave enhanced flame", Combustion and Flame, Vol. 156, No 7, 2009, pp. 1453-1461.   DOI
10 Y. H. Jeon and E. J. Lee, "Characteristics of the microwave induced flames on the stability and pollutant emissions", Journal of the Korean Society of Safety. Vol. 29, No. 4, 2014, pp.23-27.   DOI