• Title/Summary/Keyword: Combustion Regime

Search Result 97, Processing Time 0.024 seconds

A Study on the Characteristics of Ignition and Combustion, in a Diesel Spray Using Multi-Component Mixed Fuels (다성분 혼합연료를 이용한 디젤분무의 착화연소특성에 관한 연구)

  • Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of Energy Engineering
    • /
    • v.16 no.3
    • /
    • pp.120-127
    • /
    • 2007
  • The purpose of this study is experimentally to analyze that the fuel mass fractions of multi-component mixed fuels have an effect on the characteristics of spray ignition and combustion under the ambient conditions of diesel combustion fields. The characteristics of ignition and combustion were investigated by chemiluminescence images and direct photography. The experiments were conducted in the RCEM(rapid compression expansion machine) with optical access. Multi-component fuels mixed with i-octane, n-dodecane and n-hexadecane are injected in RCEM by the electronic control of common rail injector. Experimental conditions set up 42, 72 and 112 MPa in injection pressure, 700, 800 and 900 K in ambient gas temperature. The results show that the ignition delay was dependent on high cetane number. In case of low ambient temperature, the more low boiling point fuels were mixed, the lower luminance regime had a remarkable effect and also shortened diffusion combustion by increasing heat release rate.

Experimental Study on Combustion Characteristics of a Swirl-stabilized Conical Burner (스월 예혼합 버너의 연소 특성에 관한 실험적 연구)

  • Kim, Gu;Cho, Ju Hyeong;Lee, Dong Suk;Kim, Han Seok;Sohn, Chae Hoon;Lee, Sang Min;Kim, Min Kuk;Ahn, Kook Young
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.3
    • /
    • pp.1-7
    • /
    • 2014
  • Experimental study has been carried out to understand combustion characteristics of a swirl-stabilized premixed gas turbine combustor for power generation. $NO_x$ and CO emissions, extinction limit, pressure loss, and temperature distribution were measured for various operating conditions. Results show that, with increasing inlet air temperature, $NO_x$ is increased due to a higher adiabatic flame temperature while CO is increased or decreased for low or high A/F ratio regime, respectively. depending on the flame location. With decreasing load from the design condition, $NO_x$ is decreased as thermal load is reduced. With further decreasing load, however, $NO_x$ is increased due to a longer residence time. CO is decreased and then increased with decreasing load. Flame extinction limit is extended with increasing inlet air temperature as the recirculation strength is enhanced.

Reseach on Structure of Turbulent Premixed Opposed Impinging Jet Flame with Simultaneous PIV/OH PLIF measurements (PIV/OH PLIF 동시측정을 이용한 난류 대향 분출 예혼합화염 구조 연구)

  • Cho, Yong-Jin;Kin, Ji-Ho;Cho, Tae-Young;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.1-9
    • /
    • 2002
  • Simultaneous PIV and OH PLIF measurements are used for shear strain rates and flame locations, respectively. It is believed that the shear strain rates represent flow characteristics such as turbulence intensity and the OH intensity indicates the flame characteristics such as burning velocities. However, these are still lack of geometric information, which may be very important to flame quenching Hence, fractal dimensions 'Df) of the OH images are adopted as an additional information. Finally, the flame structure diagram proposed in this research has three parameters, which consist of strain rates, OH intensities and fractal dimensions. The results show that this diagram classifies turbulent premixed flames more effectively based on flame structures. The regime of weak turbulence is limited to narrow strain ranges and has the fractal dimension of about 2 In the regime of moderate turbulence, OH intensities increase as strain rates increase and the values of fractal dimensions are 1.8 Df 1.95. The regimes of thickened reaction and flame extinction (quenching) show bell-shaped and their values of fractal dimensions are 1.5 Df 1.7 and 0.9 Df 0.6, respectively.

  • PDF

Numerical Analysis of Nonlinear Longitudinal Combustion Instability in LRE Using Pressure-Sensitive Time-Lag Hypothesis (시간지연 모델을 이용한 액체로켓엔진의 축방향 비선형 연소불안정 해석)

  • Kim Seong-Ku;Choi Hwan Seok;Park Tae Seon;Kim Yong-Mo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.281-287
    • /
    • 2005
  • Nonlinear behaviors such as steep-fronted wave motions and a finite amplitude limit cycle often accompanying combustion instabilities have been numerically investigated using a characteristic-based approximate Riemann solver and the well-known ${\eta}-{\tau}$ model. A resonant pipe initially subjected to a harmonic pressure disturbance described the natural steepening process that leads to a shocked N-wave. For a linearly unstable regime, pressure oscillations reach a limit cycle which is independent of the characteristics of the initial disturbances and depends only on combustion parameters and operating conditions. For the 1.5 MW gas generator under development in KARI, the numerical results show good agreement with experimental data from hot-firing tests.

  • PDF

Effect of Additives on the Characteristics of Amorphous Nano Boron Powder Fabricated by Self-Propagating High Temperature Synthesis (자전연소합성법을 이용한 비정질 나노 붕소 분말 특성에미치는 첨가제의 영향)

  • Joo, Sin Hyong;Nersisyan, Hayk H.;Lee, Tae Hyuk;Cho, Young Hee;Kim, Hong Moule;Lee, Huk Hee;Lee, Jong Hyeon
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.659-665
    • /
    • 2015
  • The self-propagating high temperature synthesis approach was applied to synthesize amorphous boron nano-powders in argon atmospheres. For this purpose, we investigated the characteristics of a thermally induced combustion wave in the $B_2O_3+{\alpha}Mg$ system(${\alpha}=1.0-8.0$) in an argon atmospheres. In this study, the exothermic nature of the $B_2O_3-Mg$ reaction was investigated using thermodynamic calculations. Experimental study was conducted based on the calculation data and the SHS products consisting of crystalline boron and other compounds were obtained starting with a different initial molar ratio of Mg. It was found that the $B_2O_3$ and Mg reaction system produced a high combustion temperature with a rapid combustion reaction. In order to regulate the combustion reaction, NaCl, $Na_2B_4O_7$ and $H_3BO_3$ additives were investigated as diluents. In an experimental study, it was found that all diluents effectively stabilized the reaction regime. The final product of the $B_2O_3+{\alpha}Mg$ system with 0.5 mole $Na_2B_4O_7$ was identified to be amorphous boron nano-powders(< 100 nm).

The Effect of Swirl Intensity on Flow and Combustion Characteristics of Flat Flame Burner (선회도가 평면화염버너의 유동과 연소 특성에 미치는 영향)

  • Jeong, Yong-Gi;Kim, Gyeong-Cheon;Jeon, Chung-Hwan;Jang, Yeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.336-344
    • /
    • 2002
  • In this study, the flow and combustion characteristics of flat flame burner with twirler were investigated. There are several factors that define the characteristics of burner. Among them, the experiments was focused on swirl effect by four types of twirler in terms of flow structure, distribution of temperature and emission characteristics. In PIV(Particle Image Velocimetry) experiment, the less of swirl number, axial flow is dominant at the center. As swirl number increases, the flow develops along the burner tile and backward flow becomes stronger at center. From the combustion characteristics, as long as combustion load increases, blow-off limit was improved. But at the higher swirl number, the limit is decreased. At swirl number 0, the temperature is shown typical distribution of long flame burner. but swirl number increases, the temperature distribution is uniform in front of round tile. Therefore, the temperature distribution is coincided with flow structure. As excess air ratio increases, NO concentrations are high. But high swirl number gives rise to become low NO concentrations. The flame characteristics are comprised in wrinkled laminar-flame regime according to turbulence Reynolds number(Rel) and Damkohler number(Da).

An Experimental Study on Longitudinal Instability Characteristics with Injector Type in Model Gas Turbine Combustor (모델 가스터빈 연소기에서 인젝터 형태에 따른 종-방향 불안정성 특성에 관한 실험적 연구)

  • Ahn, Jihwan;Kang, Yeonse;Lee, Keeman
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.12-23
    • /
    • 2021
  • In this study, the combustion instability characteristics of low-swirl injector and high-swirl injector is compared by model gas turbine combustor. To compare of unstable behavior in high-swirl injector and low-swirl injector, we performed lots of measurement of combustion instability, with variable of equivalence ratio, combustor length and injector type. The results shown that longitudinal instability occur dominantly in model gas turbine combustor. In addition, it was found that high-swirl injector has more wide range of unstable regime than low-swirl injector. The blockage ratio what one of a parameter in low-swirl injector has not much effected in aspects of overall combustor behavior. Also, revealed that combustion instability occurred in the same combustor length has same properties, regardless of the injector type.

Behaviors of Premixed Flames and Triple Flames with its Concentration Difference in a Slot Burner (슬롯버너에서 농도차이에 따른 예혼합화염과 삼지화염의 거동)

  • Kim, Tae-Kwon;Jang, Jun-Young;Park, Jeong;Jun, Seong-Hwa;Miwa, Kei
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.85-90
    • /
    • 2004
  • We have presented characteristics of a transitional behavior from a premixed flame to a triple flame in a lifted flame according to the change of equivalence ratio. The experimental apparatus consisted of a slot burner and a contraction nozzle for a lifted flame. As concentration difference of the both side of slot burner increases, the shape of flame changed from a premixed flame to a triple flame, and the liftoff height is decreased to the minimum value and then increase again. Around this minimum point, it is confirmed a transition regime from premixed flame to triple flame. Consequently, the experimental results of the liftoff height, flame curvature and luminescence intensity showed that the stabilized laminar lifted flame regime is categorized by regimes of premixed flame, triple flame and critical flame. In the visualization experiment of smoke wire, the flow divergence and redirection reappeared in premixed flame as well as triple flame. Thus we cannot express the flame front of lifted flame has a behavior of triple flame with only flow divergence and redirection. To differentiate triple flame and premixed flame, ${\Phi}$ value of partially premixed fraction is employed. The partially premixed fraction ${\Phi}$ was constant in premixed flame. In critical flame small gradient appears over the whole regime. In triple flame, typical diffusion flame shape is obtained as parabolic distribution type due to diffusion flame trailing.

  • PDF

Characteristics of Autoignited Laminar Lifted Flames in Heated Coflow Jets of Carbon Monoxide/Hydrogen Mixtures (일산화탄소/수소 혼합기의 가열된 동축류 제트에서 자발화된 층류 부상화염의 특성)

  • Choi, Byung-Chul;Chung, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.639-646
    • /
    • 2012
  • The characteristics of autoignited lifted flames in laminar jets of carbon monoxide/hydrogen fuels have been investigated experimentally in heated coflow air. In result, as the jet velocity increased, the blowoff was directly occurred from the nozzle-attached flame without experiencing a stabilized lifted flame, in the non-autoignited regime. In the autoignited regime, the autoignited lifted flame of carbon monoxide diluted by nitrogen was affected by the water vapor content in the compressed air oxidizer, as evidenced by the variation of the ignition delay time estimated by numerical calculation. In particular, in the autoignition regime at low temperatures with added hydrogen, the liftoff height of the autoignited lifted flames decreased and then increased as the jet velocity increased. Based on the mechanism in which the autoignited laminar lifted flame is stabilized by ignition delay time, the liftoff height can be influenced not only by the heat loss, but also by the preferential diffusion between momentum and mass diffusion in fuel jets during the autoignition process.

Measurements of Ablations on Nozzle Throats of KL-3 Engines Using Image Analysis (영상분석을 통한 KL-3 엔진 노즐목 삭마량 측정)

  • 김영한;고영성;박성진;류철성;강선일;오승협
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • In this research, it is intended to measure shape of the nozzle throat of the KL-3 engine, which is the main engine of the KSR-III rocket. For the purpose, an image-based method was invented to replace the 3D pointer, which is actually inaccessible to such large scale engines. As a result, our equipment showed satisfactory Performances. Analysing the results of experiments, we find that the pattern of ablation is determined by the spray pattern and that the process of thermal ablation phenomena can be categorized in three regimes - the first regime that the shape of nozzle throat is maintained and ablation is negligible, the second regime that saw-tooth form is developed and ablation is accelerated, and the third regime that the saw-tooth form is already established and the growth of ablation rate is reduced Also, we find that the ratio of area increase after 60 seconds combustion is +5.82% and conclude that the ratio is acceptable and satisfactory.