Browse > Article
http://dx.doi.org/10.6108/KSPE.2021.25.2.012

An Experimental Study on Longitudinal Instability Characteristics with Injector Type in Model Gas Turbine Combustor  

Ahn, Jihwan (School of Mechanical and Aerospace Engineering, Sunchon National University)
Kang, Yeonse (Department of Aerospace Engineering, Sunchon National University)
Lee, Keeman (School of Mechanical and Aerospace Engineering, Sunchon National University)
Publication Information
Journal of the Korean Society of Propulsion Engineers / v.25, no.2, 2021 , pp. 12-23 More about this Journal
Abstract
In this study, the combustion instability characteristics of low-swirl injector and high-swirl injector is compared by model gas turbine combustor. To compare of unstable behavior in high-swirl injector and low-swirl injector, we performed lots of measurement of combustion instability, with variable of equivalence ratio, combustor length and injector type. The results shown that longitudinal instability occur dominantly in model gas turbine combustor. In addition, it was found that high-swirl injector has more wide range of unstable regime than low-swirl injector. The blockage ratio what one of a parameter in low-swirl injector has not much effected in aspects of overall combustor behavior. Also, revealed that combustion instability occurred in the same combustor length has same properties, regardless of the injector type.
Keywords
Combustion instability; Low-swirl flame; Longitudinal instability; Model gas turbine combustor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Plessing, T., Kortschik, C., Peters, N., Mansour, M.S. and Cheng, R.K., "Measurements of the Turbulent Burning Velocity and the Structure of Premixed Flames on a Low-Swirl Burner," Proceedings of the Combustion Institute, Vol. 28, No. 1, pp. 359-366, 2000.   DOI
2 Cheng, R.K., Low swirl combustion, The Gas Turbine Handbook, pp. 241-255, 2006.
3 Jeong, H. and Lee, K., "Effect of Swirl Angles and Combustion Characteristics of low Swirl Model Combustor," Journal of the Korean Society of Propulsion Engineers, Vol. 20, No. 4, pp. 40-49, 2016.   DOI
4 Jeong, H., Lee, B. and Lee, K., "Non-Reacting Flow Structure of a Low Swirl Combustion with respect to Inlet Velocities," Journal of the Korean Society of Propulsion Engineers, Vol. 22, No. 6, pp. 56-63, 2018.   DOI
5 Jeong, H., Lee, B., Han, M. and Lee, K., "A study on the flame liftoff height in a lean-premixed low swirl combustor," J. Korean Soc. Combust., Vol. 23, No. 3, pp. 36-42, 2018.   DOI
6 Lee, J.G., Kim, K. and Santavicca, D.A., "Measurement of equivalence ratio fluctuation and its effect on heat release during unstable combustion," Proceedings of the Combustion Institute, Vol. 28, pp. 415-421, 2000.   DOI
7 Kim, K.T., Lee, J.G., Lee, H.J. Quay, B.D. and Santavicca, D.A., "Characterization of forced flame response of swirl-stabilized turbulent lean-premixed flames in a gas turbine combustor," Journal of Engineering for Gas Turbines and Power, Vol. 132, 2010.
8 Kim, M.K., Lee, J., Park, S., Lee, J.G. and Yoon, Y., "An Experimental Study of Instability Mode Analysis in a Model Gas Turbine Combustor," J. Korean Soc. Combust., Vol. 15, No. 1, pp. 12-21, 2010.
9 Cheng, R.K., "Velocity and Scalar Characteristics of Premixed Turbulent Flames Stabilized by Weak Swirl," Combustion and Flame, Vol. 101, No. 1-2, pp. 1-14, 1995.   DOI
10 Lee, T., Park, J., Han, D. and Kim, K.T., "The dynamics of multiple interacting swirl-stabilized flames in a lean-premixed gas turbine combustor," Proceedings of the Combustion Institute, 000, pp. 1-9, 2018.
11 Kim, K.T. and Santavicca, D., "Linear stability analysis of acoustically driven pressure oscillations in a lean premixed gas turbine combustor," Journal of Mechanical Science and Technology, Vol. 23, pp. 3436-3447, 2009.   DOI
12 Littlejohn, D. and Cheng, R.K., "Fuel effects on a low-swirl injector for lean premixed gas turbines," Proceedings of the Combustion Institute, 31, pp. 3155-3162, 2007.   DOI
13 Jeong, H. Kang, K. and Lee, K., "A study on the combustion characteristics with hydrogen contents of SNG fuel in low-swirl combustor," Trans. of Korean Hydrogen and New Energy Society, Vol. 28, No. 2, pp. 181-189, 2017.   DOI
14 Oh, J., Kim, M., Heo, P., Lee, J. and Yoon, Y., "GE 7FA+e DLN-2.6 Gas Turbine Combustor : PartII Design of lab Scale Dump Combustor," Journal of the Korean Society of Propulsion Engineers, Vol. 12, No. 5, pp. 51-59, 2008.
15 Lee, T., Lee, J., Park, J., Han, D. and Kim, K.T., "Staggered swirler arrangement in two self-excited interacting swirl flames," Combustion and Flame, Vol. 198, pp. 363-375, 2018.   DOI
16 Therkelsen, P.L., Portillo, J.E., Littlejohn, D., Martin, S.M. and Cheng, R.K., "Self-induced unstable behaviors of CH4 and H2/CH4 flames in a model combustor with a low-swirl injector," Combustion and Flame, Vol. 160, pp. 307-321, 2013.   DOI
17 Thampi, G. and Sujith, R.I., "Intermittent burst oscillations: signature prior to flame blowout in a turbulent swirl-stabilized combustor," Journal of Propulsion and Power, 2015.
18 Lee, J., Park, J., Han, D. and Kim, K.T., "Subcritical Bifurcation of Two Self-Excited Interacting Swirl Flames," J. Korean Soc. Combust., Vol. 24, No. 2, pp. 17-24, 2019.   DOI
19 Kang, D.M., Culick, F.E.C. and Ratner, A., "Combustion dynamics of a low-swirl combustor," Combustion and Flame, Vol. 151, pp. 412-425, 2007.   DOI
20 Moon, K., Jegal, H., Gu, J. and Kim, K.T., "Combustion (a)coustic interactions through cross-talk area between adjacent model gas turbine combustors," Combustion and Flame, Vol. 202, pp. 405-416, 2019.   DOI
21 Tachibana, S., Yamashita, J., Zimmer, L., Suzuki, K. and Hayashi, A.K., "Dynamic behavior of a freely-propagating turbulent premixed flame under global stretch-rate oscillations," Proceedings of the Combustion Institute, Vol. 32, pp. 1795-1802, 2009.   DOI
22 Yilmaz, I., Ratner, A., Ilbas, M. and Huang, Y., "Experimental investigation of thermoacoustic coupling using blended hydrogen-methane fuels in a low swirl burner," International Journal of Hydrogen Energy, Vol. 35, pp. 329-336, 2010.   DOI
23 Gotoda, H., Nikimoto, H., Miyano, T. and Tachibana, S., "Dynamic properties of combustion instability in a lean premixed gas-turbine combustor," Chaos, Vol. 21, 2011.
24 Rana, S.C. and Sujith, R., "Bifurcation characteristics and flame dynamics of a ducted non-premixed flame with finite rate chemistry," Combustion Theory and Modelling, 2015.
25 Karthik, K., Larry, K.B.L and Matthew, P.J., "Forced synchronization of periodic and aperiodic thermoacoustic oscillations: lock-in, bifurcations and open-loop control," J. Fluid Mech., Vol. 838, pp. 690-714, 2018.   DOI
26 Cheng, R.K., Yegian, D.T., Miyasato M.M., Samuelsen, G.S., Benson, C.E., Pellizzari, R. and Loftus, P., "Scaling and development of low-swirl burners for low-emission furnaces and boilers," Proceedings of the Combustion Institute, Vol. 28, Issue 1, pp. 1305-1313, 2000.   DOI
27 Therkelsen, P.L., Littlejohn, D. and Cheng, R.K., "Extension of LSI Functionality for Gas Turbine Applications," 23rd ICDERS, 2011.
28 Kim, K.T., "Combustion instability feedback mechanisms in a lean-premixed swirl-stabilized combustor," Combustion and Flame, 171, pp. 137-151, 2016.   DOI