DOI QR코드

DOI QR Code

Experimental Study on Combustion Characteristics of a Swirl-stabilized Conical Burner

스월 예혼합 버너의 연소 특성에 관한 실험적 연구

  • Received : 2014.05.02
  • Accepted : 2014.08.19
  • Published : 2014.09.30

Abstract

Experimental study has been carried out to understand combustion characteristics of a swirl-stabilized premixed gas turbine combustor for power generation. $NO_x$ and CO emissions, extinction limit, pressure loss, and temperature distribution were measured for various operating conditions. Results show that, with increasing inlet air temperature, $NO_x$ is increased due to a higher adiabatic flame temperature while CO is increased or decreased for low or high A/F ratio regime, respectively. depending on the flame location. With decreasing load from the design condition, $NO_x$ is decreased as thermal load is reduced. With further decreasing load, however, $NO_x$ is increased due to a longer residence time. CO is decreased and then increased with decreasing load. Flame extinction limit is extended with increasing inlet air temperature as the recirculation strength is enhanced.

Keywords

References

  1. S.K. Cha, Y.S. Kim, J.J. Lee, T.S. Kim, J.L. Sohn, Y.J. Joo, Analysis of the Influence of $CO_2$ Capture on the Performance of IGCC Plants, KSFM, 13(1), (2010) 9-16. https://doi.org/10.5293/KFMA.2010.13.1.009
  2. J.H. Lee, K.J. Cha, D.J. Kim, The Basic Study on the Combustor Characteristics for $NO_x$ Reduction in Gas Turbine Combustor, Trans. of the KSME spring conference(B), 1999, 507-512.
  3. G. Cau, V. Tola, P. Deiana, Combustion and emission characteristics in a gas turbine combustor at different pressure and swirl condition, Applied Thermal Engineering, 19 (1999) 949-967 https://doi.org/10.1016/S1359-4311(98)00102-1
  4. H. Cohen, G.F.C. Rogers, H.I.H. Saravanamutto, Gas Turbine Theory, 3rd edition, Longman Scientific & Technical, England, 1987, 414.
  5. M.C. Lee, J.H. chung, W.S. Park, S. Park, Y. Yoon, The combustion tuning methodology of an industrial gas turbine using a sensitivity analysis, Applied Thermal Engineering, 50 (2013) 714-721. https://doi.org/10.1016/j.applthermaleng.2012.07.016
  6. A.S. Fietelberg, M.A. Lacey, The GE Rich Quench Lean Gas Turbine Combustor, ASME, (1997) 97-GT-127.
  7. P. Griebel, M. Fischer, C. Hassa, E. Magens, H. Nannen, A. Winandy, A. Chrystostomou, U. Meier, W. Stricker, Experimental Investigation of an Atmospheric Rectangular Rich Quench Lean Combustor Sector for Aeroengines, ASME, (1997) 97-GT-146.
  8. R. Carroni, T. Griffin, G. Kelsall, Cathlean: catalytic, hybrid, lean-premixed burner for gas turbines, Applied Thermal Engineering 24 (2004) 1665-1676. https://doi.org/10.1016/j.applthermaleng.2003.10.029
  9. A.H. Lefebvre, Gas Turbine Combustion, 1983, 1st ed., McGraw-Hill, 117-123.
  10. C. Steinbach, N. Ulibarri, M. Garay, H. Lubcke, T. Meeuwissen, K. Haffner, J. Aubry, D. Kodim, Combustion Optimization For The ALSTOM GT-13E2 Gas Turbine, ASME Turbo Expo, (2006) GT2006-90943.
  11. O. Lucca-Negro, T.O. Doherty, Vortex breakdown: a review, Progress in Energy and Combustion Science, 27 (2001) 431-481. https://doi.org/10.1016/S0360-1285(00)00022-8
  12. F. Guthe, R. Lachner, B. Schuermans, F. Biagioli, W. Geng, A. Inauen, S. Schenker, R. Bombach, N. Tylli, W. Hubschmid, Flame Imaging On The ALSTOM EV-burner: Thermoacoustic Pulsations and CFD-validation, American Institute of Aeronautics and Astronautics, (2006) 1-32.
  13. B. Fernando, G. Felic, Effect of Pressure and Fuel-Air Unmixedness on $NO_x$ Emissions from Industrial Gas Turbine Burners, Combustion and Flame, 151 (2007) 274-288. https://doi.org/10.1016/j.combustflame.2007.04.007
  14. V. Zimont, W. Polifke, M. Bettelini, W. Weisenstein, An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure, ASME, (1997) 97-GT-395.
  15. F. Biagioli., P. Schiessel, L. Fischer., Investigation Of Flame Stability Characteristics Of The EV Burner On The GT13E2 Engine, ASME Turbo Expo, (2008) GT 2008-50274.
  16. F. Peter, S. Patrick, O.P. Christian, Mixing Field Analysis Of A Gas Turbine Burner, ASME International Mechanical Engineering Congress & Exposition, IMECE, 2002, 2002-39317.
  17. C.O. Paschereit, B. Schuermans, D. Buche, Combustion Process Optimization Using Eveolutionary Algorithm, ASME Turbo Expo, (2003) GT2003-38393.
  18. F. Dinelacker, C.O.A. Soika, D. Most, D. Hofmann, A. Leipertz, W. Polifke, K. Dobeling, Structure of Locally Quenched Highly Turbulent Lean Premixed Flames, Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998, 857-865.