• Title/Summary/Keyword: Combined cooling

Search Result 251, Processing Time 0.023 seconds

Uniformity of Bi2212 Tubes Depending on Cooling Conditions (냉각 속도에 따른 Bi-2212 초전도 튜브의 균일성)

  • Lee, Nam-Il;Jnag, Gun-Eik;Park, Gwon-Bae;Oh, Il-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.259-260
    • /
    • 2006
  • This study was progressed to value of Bi2212 tubes uniformity depend on cooling conditions. The tube from 150 mm in length, 30 mm in O.D., 20 mm in I.D., 5 mm in thickness was combined with electrodes by 3 sections. The tube from 60, 70 mm in length, 30, 50 mm in O.D., 20.4, 40.4 mm in I.D., 4.8 mm in thickness was in controled of cooling rate by a heat exchanger. Bi2212 tubes were fabricated by Centrifugal Forming Process (CFP) and they were annealed at $840^{\circ}C$ for 80 h in oxygen atmosphere. The tube from 150 mm in length was analyzed by EFDLab of NIKA to show cooling rate and temperature distributions. When the tube was cooled for 100s, the temperature distributions was $663^{\circ}C$ in the middle, $500{\sim}647^{\circ}C$ in inlet, $598{\sim}647^{\circ}C$ in the other side. Electric characteristics from $I_c$ was 450 A in the middle, 650 A in inlet, 600 A in the other side. Electric characteristics by a heat exchanger showed the more fast cooling rate, the more high $I_c$.

  • PDF

A Study on Simulation for Decreasing Energy Demand According to Window-to-Wall Ratio and Installation Blind System in Building (블라인드 도입과 창면적비에 따른 표준건축물의 에너지 수요 저감에 대한 시뮬레이션 연구)

  • Kang, Suk-Min;Lee, Tae-Kyu;Kim, Jeong-Uk
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.12 no.6
    • /
    • pp.531-542
    • /
    • 2018
  • Building energy demands have highly risen in modern society; thus, It is necessary to reduce building energy demands especially commercial buildings adopting a curtain wall architecture. Curtain wall architectures have a high ratio of windows which is a vulnerable in heat insulations as cladding. In order to complement insulation performance of windows in these buildings, there are various methods adopted often such as installing blinds, wing wall and films. There are two suggestions of this paper. 1) WWR (Window-to-Wall Ratio) makes a impaction of energy demands in buildings. 2) Another one is an efficiency of blind systems which are installed in buildings in order to reduce cooling demands. It is also critical to make fundamental model for low-energy building construction by processing a lot of simulation As a result by this study, 1) an external blind system is more useful for reducing cooling energy demands rather than an internal blind system. 2) Buildings which have a large window require more amount of cooling demands. In case of WWR 45%, it needs more cooling energy rather than WWR 15% model's 3) Adopting blind system would reduce energy demands. WWR 45% model with external blind systems reduces about 4% of cooling energy demands compared to same model without any blind systems.4) it is necessary to study an efficiency of blind systems combined with renewable energy and it will be possible to reduce more energy demand in building significantly.

A Study on Cooling Characteristic of TMA-Water Clathrate Compound for Low Temperature Latent Heat Storage (저온잠열저장을 위한 TMA-물계 포접화합물의 냉각특성에 대한 연구)

  • Kim, Chang-Oh;Kim, Jin-Heung;Chung, Nak-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2471-2475
    • /
    • 2007
  • Clathrate compound is the material that host in hydrogen bond forms cage and guest is included into it and combined. Crystallization of hydrate is generated at higher temperature than that of ice from pure water. And physical properties according to temperature are stable and congruent melting phenomenon is occurred without phase separation. But clathrate compound still had supercooling problem occurred in the course of phase change and supercooling should be minimized because it affects efficiency of equipment very much. Therefore, various studies on additives to restrain this or heat storage methods are needed. In this study was investigated the cooling characteristics of the TMA-water clathrate compound including TMA (Tri-methyl-amine, $(CH_3)_3N)$ of 20${\sim}$25 wt% as a low temperature latent heat storage material. And ethanol$(CH_3CH_2OH)$ was added and its cooling characteristics were studied experimentally to restrain supercooling of TMA-water clathrate compound.

  • PDF

Effect of Cross/Parallel Rib Configurations on Heat/Mass Transfer in Rotating Two-Pass Turbine Blade Internal Passage (회전하는 터빈 블레이드 내부 이차냉각유로에서 엇갈린요철과 평행요철이 열/물질전달에 미치는 영향)

  • Lee, Se-Yeong;Lee, Dong-Ho;Jo, Hyeong-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1249-1259
    • /
    • 2002
  • The present study investigates the convective heat/mass transfer inside a cooling passage of rotating gas-turbine blades. The rotating duct has various configurations made of ribs with 70。 attack angle, which are attached on leading and trailing surfaces. A naphthalene sublimation technique is employed to determine detailed local heat transfer coefficients using the heat and mass transfer analogy. The present experiments employ two-surface heating conditions in the rotating duct because the surfaces, exposed to hot gas stream, are pressure and suction side surfaces in the middle passages of an actual gas-turbine blade. In the stationary conditions, the parallel rib arrangement presents higher heat/mass transfer characteristics in the first pass, however, these characteristics disappear in the second pass due to the turning effects. In the rotating conditions, the cross rib present less heat/mass transfer discrepancy between the leading and the trailing surfaces in the first pass. In the second pass, the heat/mass transfer characteristics are much more complex due to the combined effects of the angled ribs, the sharp fuming and the rotation.

The Energy Performance & Economy Efficiency Evaluation of Micro Gas Turbine Installed in Hospital (대형병원 건물에 마이크로 가스터빈 적용을 위한 에너지성능 및 경제성 평가)

  • Kim, Byoung-Soo;Hong, Won-Pyo
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.8-13
    • /
    • 2009
  • Feasibilities of the application of a micro gas turbine cogeneration system to a large size hospital building are studied by estimating energy demands and supplies. The energy demand for electricity is estimated by surveying and sorting the consumption records for various equipment and devices. The cooling heating, and hot water demands are further refined with TRNSYS and ESP-r to generate load profiles for the subsequent operation simulations. The operation of the suggested cogeneration system in conjunction with the load data is simulated for a time span of a year to predict energy consumption and gain profile. The simulation revealed that the thermal efficiency of the gas turbine is about 30% and it supplies 60% of the electricity required by the building. The recovered heat can meet 56% of total heating load and 67% of cooling, and the combined efficiency reaches up to 70%.

Micro-macroscopic analysis on the directional casting of a metal alloy (합금의 방향성 주조에 대한 미시적-거시적 해석)

  • Yu, Ho-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1303-1313
    • /
    • 1997
  • A micro-macroscopic analysis on the conduction-controlled directional casting of Al-Cu alloys is performed, in which emphases are placed on the microstructural features. In order to facilitate the solution procedure, an iterative micro-macroscopic coupling algorithm is developed. The predicted results show that the effect of finite back diffusion on the transient solidification process in comparison with the lever rule depends essentially on the initial concentration of an alloy. In the final casting, the eutectic fraction is distributed in an increasing-decreasing-increasing pattern, each mode of which is named the chill, interior and end zones. This nonuniformity per se suffices to justify the necessity of this work because it originates from the combined effects of finite back diffusion and cooling path-dependent nature of the eutectic formation. As the cooling rate is enhanced, not only the influence depths of boundaries narrow, but also the eutectic fractions in the chill and interior zones increase. In addition, it is revealed for the first time that the micro segregation band is formed in response to a sudden change in cooling rate during the directional casting. An increasing change creates an overshooting band in the eutectic fraction distribution, and vice versa.

Operating Performance of Metal Hydride Heat Pump for Cooling (금속수소화물을 이용한 냉열발생형 열펌프의 성능)

  • Park, C.K.;Komazaki, Y.;Suda, S.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.4 no.1
    • /
    • pp.21-30
    • /
    • 1993
  • The operational characteristics of a metal hydride heat pump system are strongly dependent on the amound of hydrogen gas transferred by hydriding and dehydriding reactions between the reactors under dynamic conditions. A new metal hydride heat pump combined with hydrogen compressor was constructed and the dependency of its operating conditions on such as cycle time, amount of hydrogen to be transferred between two reacting metal hydride reactors, operating temperature, and heat transmission characteristics of the reactors was investigated to find the optimum operating efficiency. These conditions were also evaluated in connection with the cooling output and hydrogen compressor connected to the system in order to enhance the total efficiency.

  • PDF

Development of a Hydraulic Power Package Enclosed with an Electric Motor (모터 일체형 유압 파워 패키지의 개발)

  • Park, Y.H.;Lee, C.D.;Lee, J.K.
    • Journal of Power System Engineering
    • /
    • v.4 no.3
    • /
    • pp.55-61
    • /
    • 2000
  • In this study, a new design of an one-body type of an unbalanced-fixed- displacement type vane pump combined with an induction type electric motor was suggested. By the application of the new design scheme, it was possible to reduce the number of parts of the pump system and to cut down the volume of power package than that of already-used products. The case in this study enabled efficient heat transfer and electricity insulation of hydraulic fluid. Thus oil moves through the inside of the package for cooling and returns to the reservoir. Because of this design, it was difficult to measure the shaft-input torque. Therefore the package overall efficiency in the paper was evaluated with a ratio of hydraulic power and electric power.

  • PDF

Thermal Analysis of a Combined Absorption Cycle of Cogeneration of Power and Cooling for Use of Low Temperature Source (저온 열원의 활용을 위한 흡수 발전/냉각 복합 사이클의 열적 해석)

  • Kim, Kyoung-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.413-420
    • /
    • 2011
  • Thermodynamic cycles using binary mixtures as working fluids offer a high potential for utilization of low-temperature heat sources. This paper presents a thermodynamic performance analysis of Goswami cycle which was recently suggested to produce power and cooling simultaneously and combines the Rankine cycle and absorption refrigeration cycle by using ammoniawater mixture as working fluid. Effects of the system parameters such as concentration of ammonia and turbine inlet pressure on the system are parametrically investigated. Results show that refrigeration capacity or thermal efficiency has an optimum value with respect to ammonia concentration as well as to turbine inlet pressure.

Application of computational technologies to R/C structural analysis

  • Hara, Takashi
    • Computers and Concrete
    • /
    • v.8 no.1
    • /
    • pp.97-110
    • /
    • 2011
  • In this paper, FEM procedure is applied to the static and dynamic analyses of R/C structures. Simple R/C shell structure is solved by using FEM procedures and the experimental evaluations are performed to represent the applicability of FEM procedure to R/C structures. Also, R/C columns are analyzed numerically and experimentally. On the basis of these results, FEM procedures are applied to the R/C cooling tower structures assembled by huge R/C shell structure and a lot of discrete R/C columns. In this analysis, the parallel computing procedures are introduced into these analyses to reduce the computational effort. The dynamic performances of R/C cooling tower are also solved by the application of parallel computations as well. From the numerical analyses, the conventional FEM procedures combined with computational technologies enables us to design the huge R/C structures statically and dynamically.