References
-
Roy, P., Desilets, M., Galanis, N., Nesreddine, H., and Cayer, E., 2010, Thermodynamic analysis of a power cycle using a low-temperature source and a binary
$NH_{3}-H_{2}O$ mixture as working fluid, Int. J. Thermal Sci., Vol. 49, pp. 48-58. https://doi.org/10.1016/j.ijthermalsci.2009.05.014 - Ogriseck, S., 2009, Integration of Kalina cycle in a combined heat and power plant, a case study, Applied Ther. Eng., Vol. 29, pp. 2843-2848. https://doi.org/10.1016/j.applthermaleng.2009.02.006
- Bombarda, P., Invernizzi, C. M. and Pietra, C., 2010, Heat recovery from Diesel engine:A thermodynamic comparision between Kalina and ORC cycle, App. Therm. Eng., Vol. 30, pp. 212-219. https://doi.org/10.1016/j.applthermaleng.2009.08.006
- Kim, K. H., Ko, H. J. and Kim, S. W., 2011, Performance Analysis of Kalina Cycle using Ammonia-Water Mixture as Working Fluid for Use of Low-Temperature Energy Source, Trans. Korean Hydrogen New Energy Society, Vol. 22, pp. 109-117.
- Prisyazhniuk, V. A., 2008, Alternative trends in development of thermal power plant, Applied Thermal Engineering, Vol. 28, pp. 190-194. https://doi.org/10.1016/j.applthermaleng.2007.03.025
- Zamfirescu, C. and Dincer, I., 2008, Thermodynamic analysis of a novel ammonia-water trilateral Rankine cycle, Thermo-chimica Acta, Vol. 477, pp. 7-15. https://doi.org/10.1016/j.tca.2008.08.002
- Kiani, B., Akisawa, A. and Kashiwagi, T., 2008, Thermodynamic analysis of load-leveling hyper energy converting and utilization system, Energy, Vol. 33, pp. 400-409. https://doi.org/10.1016/j.energy.2007.10.005
- Nowak, W., Stachel, A. A. and Borsukiewicz- Gozdur, A., 2008, Possibilities of implemen tation of a absorption heat pump in realization of the Clausius-Rankine cycle in geothermal power station, Applied Ther. Eng., Vol. 28, pp. 335-340. https://doi.org/10.1016/j.applthermaleng.2006.02.031
- Lolos, P. A. and Rogdakis, E. D., 2009, A Kalina power cycle driven by renewable energy sources, Energy, Vol. 34, pp. 457-464. https://doi.org/10.1016/j.energy.2008.12.011
- Arslan, O., 2010, Exergoeconomic evaluation of electricity generation by the medium temperature geothermal resources, using Kalina cycle:Simav case study, Int. J. Therm. Sci., Vol. 49, pp. 1866-1873. https://doi.org/10.1016/j.ijthermalsci.2010.05.009
- Kim, K. H., Kim, S. W. and Ko, H. J., 2011, Study on the Rankine Cycle using Ammonia-Water Mixture as Working Fluid for Low-Temperature Waste Heat, Trans. Korean Hydrogen New Energy Society, Vol. 21, pp. 570-579.
- Kim, K. H., 2011, Study on Regenerative Rankine Cycle with Partial-Boiling Flow Using Ammonia-Water Mixture as Working Fluid, SAREK, Vol. 23, pp. 224-231.
- Wagner, W. R., Zamfirescu, C., and Dincer, I., 2010, Thermodynamic performance assessment of an ammonia-water Rankine cycle for power and heat production, Energy Convertsion Management, Vol. 51, pp. 2501-2509. https://doi.org/10.1016/j.enconman.2010.05.014
- Wang, J., Dai, Y., Zhang, T., and Ma, S., 2009, Parametric analysis for a new power and ejector-absorption refrigeration cycle, Energy, Vol. 34, pp. 1587-1593. https://doi.org/10.1016/j.energy.2009.07.004
- Xu, F., Goswami, D. Y., and Bhagwat, S. S., 2000, A combined power/cooling cycle, Energy, Vol. 25, pp. 233-246. https://doi.org/10.1016/S0360-5442(99)00071-7
- Padilla, R. V., Demirkaya, G. and Goswami, D. Y., 2010, Stefanakos, Analysis of power and cooling using ammonia-water mixture, Energy, Vol. 35, pp. 4649-4657. https://doi.org/10.1016/j.energy.2010.09.042
- Xu, F. and Goswami, D. Y., 1999, Thermodynamic properties of ammonia-water mixtures for power-cycle application, Energy, Vol. 24, pp. 525-536. https://doi.org/10.1016/S0360-5442(99)00007-9