• Title/Summary/Keyword: Combined Loads

Search Result 484, Processing Time 0.032 seconds

Fast Image Restoration Using Boundary Artifacts Reduction method (경계왜곡 제거방법을 이용한 고속 영상복원)

  • Yim, Sung-Jun;Kim, Dong-Gyun;Shin, Jeong-Ho;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.6
    • /
    • pp.63-74
    • /
    • 2007
  • Fast Fourier transform(FFT) is powerful, fast computation framework for convolution in many image restoration application. However, an actually observed image acquired with finite aperture of the acquisition device from the infinite background and it lost data outside the cropped region. Because of these the boundary artifacts are produced. This paper reviewed and summarized the up to date the techniques that have been applied to reduce of the boundary artifacts. Moreover, we propose a new block-based fast image restoration using combined extrapolation and edge-tapering without boundary artifacts with reduced computational loads. We apply edgetapering to the inner blocks because they contain outside information of boundary. And outer blocks use half-convolution extrapolation. For this process it is possible that fast image restoration without boundary artifacts.

Partial Confinement Utilization for Rectangular Concrete Columns Subjected to Biaxial Bending and Axial Compression

  • Abd El Fattah, Ahmed M.;Rasheed, Hayder A.;Al-Rahmani, Ahmed H.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.135-149
    • /
    • 2017
  • The prediction of the actual ultimate capacity of confined concrete columns requires partial confinement utilization under eccentric loading. This is attributed to the reduction in compression zone compared to columns under pure axial compression. Modern codes and standards are introducing the need to perform extreme event analysis under static loads. There has been a number of studies that focused on the analysis and testing of concentric columns. On the other hand, the augmentation of compressive strength due to partial confinement has not been treated before. The higher eccentricity causes smaller confined concrete region in compression yielding smaller increase in strength of concrete. Accordingly, the ultimate eccentric confined strength is gradually reduced from the fully confined value $f_{cc}$ (at zero eccentricity) to the unconfined value $f^{\prime}_c$ (at infinite eccentricity) as a function of the ratio of compression area to total area of each eccentricity. This approach is used to implement an adaptive Mander model for analyzing eccentrically loaded columns. Generalization of the 3D moment of area approach is implemented based on proportional loading, fiber model and the secant stiffness approach, in an incremental-iterative numerical procedure to achieve the equilibrium path of $P-{\varepsilon}$ and $M-{\varphi}$ response up to failure. This numerical analysis is adapted to assess the confining effect in rectangular columns confined with conventional lateral steel. This analysis is validated against experimental data found in the literature showing good correlation to the partial confinement model while rendering the full confinement treatment unsafe.

Shear Strength and Failure Mode of Architectural Masonry Walls (내진보강된 치장조적벽의 파괴특성과 전단강도)

  • Jin, Hee-Yong;Han, Sang-Whan;Park, Young-Mi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.89-92
    • /
    • 2008
  • This study investigates the shear behavior of architectural masonry veneer wall reinforced with specific reinforcement details proposed by this study. For this purpose, experimental tests were conducted using one un-reinforced masonry(URM) wall specimen and three reinforced masonry(RM) wall specimens under quasi static cyclic loads. Un-reinforced(plain) masonry wall is expressed that behavior and failure mode are different for aspect ratio(L/H) and axial compressive force. The test variables are wall aspect ratio and presence of reinforcement. These specimens are masonry structure for architectural clading that is not to exist the axial compressive force. thus the axial compressive force is excepted from test variable. Test result, Behavior of specimens are dominated over rocking mode, but final failure modes are combined with different behaviors. And FEMA273 has proposed the equation of shear strength of masonry pier subjected to in-plane loading. Shear strength equations are classified four types of failure mode that is Rocking, and Toe-Crushing, Bed-Joint-Sliding and Diagonal-Tension. FEMA273 equations predict the behavior modes well, but shear strength is shown in different result.

  • PDF

Development of Environmental Load Calculation Method for Airport Concrete Pavement Design (공항 콘크리트 포장 설계를 위한 환경하중 산정방법 개발)

  • Park, Joo-Young;Hong, Dong-Seong;Kim, Yeon-Tae;Jeong, Jin-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.729-737
    • /
    • 2013
  • The environmental load of concrete pavement can be categorized by temperature and moisture loads, which mean temperature distribution, and drying shrinkage and creep in the concrete slab. In this study, a method calculating the environmental load essential to mechanistic design of airport concrete pavement was developed. First, target area and design slab thickness were determined. And, the concrete temperature distribution with slab depth was predicted by a pavement temperature prediction program to calculate equivalent linear temperature difference. The concrete drying shrinkage was predicted by improving an existing model to calculate differential shrinkage equivalent linear temperature difference considering regional relative humidity. In addition, the stress relaxation was considered in the drying shrinkage. Eventually, the equivalent linear temperature difference due to temperature and the differential shrinkage equivalent linear temperature difference due to moisture were combined into the total equivalent linear temperature difference as terminal environmental load. The environmental load of eight civilian and two military airports which represent domestic regional weather conditions were calculated and compared by the method developed in this study to show its application.

Large eddy simulation of wind effects on a super-tall building

  • Huang, Shenghong;Li, Q.S.
    • Wind and Structures
    • /
    • v.13 no.6
    • /
    • pp.557-580
    • /
    • 2010
  • A new inflow turbulence generation method and a combined dynamic SGS model recently developed by the authors were applied to evaluate the wind effects on 508 m high Taipei 101 Tower. Unlike the majority of the past studies on large eddy simulation (LES) of wind effects on tall buildings, the present numerical simulations were conducted for the full-scale tall building with Reynolds number greater than $10^8$. The inflow turbulent flow field was generated based on the new method called discretizing and synthesizing of random flow generation technique (DSRFG) with a prominent feature that the generated wind velocity fluctuations satisfy any target spectrum and target profiles of turbulence intensity and turbulence integral length scale. The new dynamic SGS model takes both advantages of one-equation SGS model and a dynamic production term without test-filtering operation, which is particular suitable to relative coarse grid situations and high Reynolds number flows. The results of comparative investigations with and without generation of inflow turbulence show that: (1) proper simulation of an inflow turbulent field is essential in accurate evaluation of dynamic wind loads on a tall building and the prescribed inflow turbulence characteristics can be adequately imposed on the inflow boundary by the DSRFG method; (2) the DSRFG can generate a large number of random vortex-like patterns in oncoming flow, leading to good agreements of both mean and dynamic forces with wind tunnel test results; (3) The dynamic mechanism of the adopted SGS model behaves adequately in the present LES and its integration with the DSRFG technique can provide satisfactory predictions of the wind effects on the super-tall building.

Current effects on global motions of a floating platform in waves

  • Shen, Meng;Liu, Yuming
    • Ocean Systems Engineering
    • /
    • v.7 no.2
    • /
    • pp.121-141
    • /
    • 2017
  • The purpose of this paper is to understand and model the slow current (~2 m/s) effects on the global response of a floating offshore platform in waves. A time-domain numerical simulation of full wave-current-body interaction by a quadratic boundary element method (QBEM) is applied to compute the hydrodynamic loads and motions of a floating body under the combined influence of waves and current. The study is performed in the context of linearized potential flow theory that is sufficient in understanding the leading-order current effect on the body motion. The numerical simulations are validated by quantitative comparisons of the hydrodynamic coefficients with the WAMIT prediction for a truncated vertical circular cylinder in the absence of current. It is found from the simulation results that the presence of current leads to a loss of symmetry in flow dynamics for a tension-leg platform (TLP) with symmetric geometry, resulting in the coupling of the heave motion with the surge and pitch motions. Moreover, the presence of current largely affects the wave excitation force and moment as well as the motion of the platform while it has a negligible influence on the added mass and damping coefficients. It is also found that the current effect is strongly correlated with the wavelength but not frequency of the wave field. The global motion of a floating body in the presence of a slow current at relatively small encounter wave frequencies can be satisfactorily approximated by the response of the body in the absence of current at the intrinsic frequency corresponding to the same wavelength as in the presence of current. This finding has a significant implication in the model test of global motions of offshore structures in ocean waves and currents.

Estimation on clamping load of high strength bolts considering various environment conditions

  • Nah, Hwan-Seon;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.399-408
    • /
    • 2017
  • Of high strength bolts, the torque shear type bolt is known to be clamped normally when pin-tails are broken. Sometimes the clamping loads on slip critical connections considerably fluctuate from the required tension due to variation of torque coefficient. This is why the viscosity of lubricant affects the torque coefficient by temperature. In this study, the clamping tests of high strength bolts were performed independently at laboratory conditions and at outdoor environment. The temperatures of outdoor environment candidates were ranged from $-11^{\circ}C$ to $34^{\circ}C$ for six years. The temperature at laboratory condition was composed from $-10^{\circ}C$ to $50^{\circ}C$ at each $10^{\circ}C$ interval. At outdoor environment conditions, the clamping load of high strength bolt was varied from 159 to 210 kN and the torque value was varied from 405 to 556 Nm. The torque coefficients at outdoor environment were calculated from 0.126 to 0.158 when tensions were measured from 179 to 192 kN by using tension meter. The torque coefficients at outdoor environment conditions were analyzed as the range from 0.118 to 0.152. From these tests, the diverse equations of torque coefficient, tension dependent to temperature can be acquired by statistic regressive analysis. The variable of torque coefficient at laboratory conditions is 0.13% per each $1^{\circ}C$ when it reaches 2.73% per each $1^{\circ}C$ at outdoor environment conditions. When the results at laboratory conditions and at outdoor environment were combined to get the revised equations, the change in torque coefficient was modified as 0.2% per each $1^{\circ}C$ and the increment of tension was adjusted as 1.89 % per each $1^{\circ}C$.

Analysis of the Warm Shrink Fitting Process for Assembling the Part(Shaft and Output Gear) (단품(축/OUTPUT 기어)조립을 위한 온간압입공정 해석)

  • Kim, Tae-Jin;Kang, Hee-Jun;Kim, Chul;Chu, Suck-Jae;Kim, Ho-Yun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.47-54
    • /
    • 2008
  • Fitting process carried out in the automobile transmission assembly line is classified into three classes; heat fitting, press fitting, and their combined fitting. Heat fitting is a method that heats gear to a suitable range under the tempering temperature and squeezes it toward the outer diameter of shaft. Its stress depends on the yield strength of gear. Press fitting is a method that generally squeezes gear toward that of shaft at room temperature by a press. Another method heats warmly gear and safely squeezes it toward that of shaft. Warm shrink fitting process for the automobile transmission part is now gradually increased, but the parts (shaft/gear) assembled by this process produced dimensional changes in both the outer diameter and profile of the gear. So that it may cause noise and vibration between gears. In order to solve these problems, we need an analysis of warm shrink fitting process, in which design parameters are involved; contact pressure according to fitting interference between outer diameter of shaft and inner diameter of gear, fitting temperature, and profile tolerance of gear. In this study, an closed form equation to predict contact pressure and fitting load was proposed in order to develop an optimization technique of the warm shrink fitting process and verified its reliability through the experimental results measured in the field and FEM, that is, thermal-structural coupled field analysis. Actual loads measured in the field was in good agreements with the results obtained by the theoretical and finite element analysis.

Range Query Processing using Space and Time Filtering in Fixed Grid Indexing (고정 그리드 인덱싱에서 공간과 시간 필터링을 이용한 범위 질의 처리)

  • Jeon, Se-Gil;Nah, Yun-Mook
    • The KIPS Transactions:PartD
    • /
    • v.11D no.4
    • /
    • pp.835-844
    • /
    • 2004
  • Recently, the location-based service for moving customers is becoming one of the most important service in mobile communication area. For moving object applications, there are lots of update operations and such update loads are concentrated on some particular area unevenly. Range queries, whose range can be window or circular, are the most essential query types in LBS. We need to distinguish completely contained cells from partially contained cells in those range queries. Also, it is necessary to consider temporal dimension to filter out qualifying objects correctly. In this paper, we adopt two-level index structures with fixed grid file structures in the second level, which are designed to minimize update operations. We propose a spatial ceil filtering method using VP filtering and a combined spatio-temporal filtering method using time gone concepts. Some experimental results are shown for various window queries and circular queries with different filtering combinations to show the performance tradeoffs of the proposed methods.

Impact of spar-nacelle-blade coupling on the edgewise response of floating offshore wind turbines

  • Dinh, Van-Nguyen;Basu, Biswajit;Nielsen, Soren R.K.
    • Coupled systems mechanics
    • /
    • v.2 no.3
    • /
    • pp.231-253
    • /
    • 2013
  • The impact of spar-nacelle-blade coupling on edgewise dynamic responses of spar-type floating wind turbines (S-FOWT) is investigated in this paper. Currently, this coupling is not considered explicitly by researchers. First of all, a coupled model of edgewise vibration of the S-FOWT considering the aerodynamic properties of the blade, variable mass and stiffness per unit length, gravity, the interactions among the blades, nacelle, spar and mooring system, the hydrodynamic effects, the restoring moment and the buoyancy force is proposed. The aerodynamic loads are combined of a steady wind (including the wind shear) and turbulence. Each blade is modeled as a cantilever beam vibrating in its fundamental mode. The mooring cables are modeled using an extended quasi-static method. The hydrodynamic effects calculated by using Morison's equation and strip theory consist of added mass, fluid inertia and viscous drag forces. The random sea state is simulated by superimposing a number of linear regular waves. The model shows that the vibration of the blades, nacelle, tower, and spar are coupled in all degrees of freedom and in all inertial, dissipative and elastic components. An uncoupled model of the S-FOWT is then formulated in which the blades and the nacelle are not coupled with the spar vibration. A 5MW S-FOWT is analyzed by using the two proposed models. In the no-wave sea, the coupling is found to contribute to spar responses only. When the wave loading is considered, the coupling is significant for the responses of both the nacelle and the spar.