• Title/Summary/Keyword: Combination Spring

Search Result 129, Processing Time 0.02 seconds

A Study on the Optimal Combination of Leaf and Air Spring for the Suspension (현가장치에서의 공기스프링과 겹판스프링의 최적 조합방법 연구)

  • Choi, Sun-Jun;Kwon, Hyuk-Hong;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.82-91
    • /
    • 1995
  • Many kind of springs are used in the suspension of automotive vehicles and among these the leaf spring and the air spring are included. These two springs have not been generally used together in one suspension, but recently the automotive models which use these two springs together increase. This reason is due to the merit of the combination of two type springs. The merits are two. One is the character of air spring, that is, the natural frequen- cy of system is constant in spite of variable weight. The other is the character of leaf spring, that is, the suspension mechanism is simple. The combination spring is used in medium size and special purpose bus. In this paper, we formulate the condition which the leaf spring must satisfy to be optimal design in the combination spring. And experiment is performed to prove the theory. The results are that the combination spring is better than leaf spring in the ride, and that the purposed theory is good for the combination spring design.

  • PDF

The Characteristic Analysis on the Combination of Air and Half-long Taper Spring (반쪽 롱테이퍼 스프링과 공기스프링의 조합시 특성해석 연구)

  • Kwon, H. H.;Choi, S. J.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.113-119
    • /
    • 1998
  • Air spring has the advantages to be nearly constant in natural frequency inspite of load change, and to be able to control height level. Half-long taper spring has the advantages to function as well link as spring. Thus to utilize two type spring's advantages, half-long taper spring and air spring are combined and used. In this study, the theory to calculate the characteristics in combination is developed.

  • PDF

Growth, Yield and Grain Quality affected by Seeding Rates and Fertilizing Combinations in Spring-sown Jinyangbori

  • Kim, Dae-Ho;Kim, Su-Kyeong;Kim, Eun-Seok;Song, Guen-Woo;Kang, Dong-Ju
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.2
    • /
    • pp.73-78
    • /
    • 2000
  • This study was conducted for 2 years at Chinju region to establish suitable seeding rate and fertilizing levels of nitrogen, phosphorous and potassium in spring-sown Jinyangbori. Heading and maturing were delayed by increasing fertilizers, especially nitrogen. Number of spikes per were secured by much seeding and increased application of nitrogen. One thousand grain weight reduced with increasing fertilization at any seeding rate. Relatively high harvest indices were observed with 12-10-4 at 10kg. 10a$^{-l}$ seeds planted, followed by 6-10-8 at 15 kgㆍ 10a$^{-1}$, and 6-10-4kgㆍ 10a$^{-l}$ at 20kg ㆍ 10a$^{-l}$ of N-P-K fertilizing combinations, respectively. There was no distinct differences on yield for various seeding rates in spring-sown barley. When seeding rate increased up to 15kgㆍ10a$^{-1}$, the positive effect of fertilizers was recognized as the function of balanced-application. It was possible to recommend 10kgㆍ10a$^{-1}$ as seeding rate and 6-5-4(N-P-K)kgㆍ10a$^{-1}$ as fertilizing combination in spring-time seeding considering low input and sustainable agriculture. There was no significant difference of protein content in grain by seeding rate. Increase of nitrogen fertilizer enhanced protein content in grain.

  • PDF

A Study on the Spring Design of Smooth Lifting System for Monitor (모니터용 유연 승강의 스프링 설계에 관한 연구)

  • Cheong, Seon-Hwan;Choi, Seong-Dae;Byun, Yong-Kun;Choi, Eun-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.4
    • /
    • pp.48-53
    • /
    • 2005
  • This research is materialized the mechanism of a interlocking elevator device to meet with customer's requirement demanding a variety of function. On this suitably theoretical translation and by considering of material significance of the most factor's tension spring and torsion spring, it's compared and reviewed the stress's calculation according that SWC and SWPB applied differently. And also that is approved through actual experiment. Out of a variety of feasible movement. Torque Balance is materialized by combination of tension spring, torsion spring and disk spring. So that application of 3 factors for optimal design is very important factor. In future, this research thesis make sure to play a highly role for application and improvement mechanically in various industry sector out of materializing interlock.

  • PDF

A Study on the Color Design Support System for Selecting Color Combination (실내 색채 디자인 지원 시스템에 관한 연구)

  • 고경진;정선영;이현수
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2001.11a
    • /
    • pp.65-68
    • /
    • 2001
  • Color is an imfortant factor for interior design. But both selecting the appropriate color and combinating many color are not easy. Actually designers spend much time searching interior images published in magazine to refer to previous cases of the color combination. And the side up, they undergo a process to try to search own hoping color in the interior design example of the magazine. As an alternative to avoid this inefficient process, this study provides a method to show good cases of color combination. This method can reduce trial and error in the determination the color combination.

  • PDF

Studies on Precision Bending of Motor Spring (모터스프링의 정밀 벤딩 성형에 관한 연구)

  • Park, S.J.;Lee, S.G.;Kim, D.H.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.366-372
    • /
    • 2016
  • Recently, the amount of spring usage is on the increase in the automotive and aircraft parts industries as well as home appliances. Manufacture of spring reflects a need for diversification, mass production and high precision. Therefore it is very important to know the bending method and forming technique according to the shape of spring. In this study, to find the optimal bending method for the motor spring, the FE-simulation was executed using orthogonal array. The design parameters are wire length, length of vibration and feed rate. Then, the optimal combination of design parameters was suggested using ANN technique.

Research on CR/Nylon 6 Cord Rubber Sleeve of Rubber Air Spring (고무 공기 스프링용 CR/Nylon 6 코드 고무 슬리브에 대한 연구)

  • Seo, Jae-Chan;Kim, Dae-Jin;Park, Hae-Youn;Seo, Kwan-Ho
    • Elastomers and Composites
    • /
    • v.49 no.4
    • /
    • pp.293-304
    • /
    • 2014
  • Rubber air spring (RAS) is a special suspension device for the industries of automobile, railroad car and other transportation. A RAS serves as a spring component with the elastic effect of compression and expansion of air in a composite rubber bag. The main component of RAS is the rubber sleeve. Rubber sleeve is the composite which is made up of combination of chloroprene rubber (CR) and nylon 6 cord, and the adhesive strength between CR and nylon 6 cord is very important. In this study, considering the effects of additives in rubber sleeve, various physical properties were tested to find the optimal combination of composition and conditions. Further, in order to select the optimum orientation of the reinforcing fibers, numerical analysis was performed using the finite elements method. After assembling all components of RAS, it was mounted on an actual vehicle, and then it was tested air leakage, fatigue life and fundamental properties.

Optimum Shape Design of the Spring to Improve the Loose-proof Performance of the Lock Nut (로크 너트의 풀림 방지 성능 향상을 위한 스프링의 최적 형상 설계)

  • Song, Hyun-Seok;Chung, Won-Sun;Jung, Do-Hyun;Seo, Young-Kyo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.91-96
    • /
    • 2010
  • The combination of a bolt and nut is the element most widely used for connecting machines and structures. When a load is repetitively applied in the direction right angle to the bolt axis after the bolt and nut is fastened, the nut gradually becomes loose. To solve this problem, in this study, a new type of the loose-proof nut, called a lock nut, is developed. The lock nut is equipped with a spring, and the spring increases the axial force of the bolt. Then, the connection force between the bolt and nut is also augmented. Three dimensional finite element models for the bolt and spring are generated, and the change of the axial force of the bolt while the bolt is being inserted into the spring is analyzed using MSC/Marc, a commercial finite element program. Finally, the optimum shape of the spring is found according to the response surface analysis methodology. The optimization result is verified by comparing the variation of the axial force of the bolt when the bolt is inserted to the initial and optimized spring.

Natural Frequencies of a Beam on Inhomogeneous Foundation (비균질 지반위에 놓여있는 보의 고유진동수)

  • 김용철
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.69-77
    • /
    • 1992
  • The natural frequencies of a beam on elastic foundation are investigated in the present paper. The inhomogeneous elastic foundation can be modelled as a combination of distributed translational spring, rotational spring, intermediate supports and dampers. The natural frequencies and mode shapes of the system are obtained by using the Galerkin's method, and also compared with the results in the literature. Furthermore, the natural frequencies of the beam with elastically mounted masses, which can be used as vibration absorbers, are obtained by an efficient numerical scheme suggested in the present paper.

  • PDF

Hysteretic behavior studies of self-centering energy dissipation bracing system

  • Xu, Longhe;Fan, Xiaowei;Lu, Dengcheng;Li, Zhongxian
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1205-1219
    • /
    • 2016
  • This paper presents a new type of pre-pressed spring self-centering energy dissipation (PS-SCED) bracing system that combines friction mechanisms between the inner and outer tube members to provide the energy dissipation with the pre-pressed combination disc springs installed on both ends of the brace to provide the self-centering capability. The mechanics and the equations governing the design and hysteretic responses of the bracing system are outlined, and a series of validation tests of components comprising the self-centering mechanism of combination disc springs, the friction energy dissipation mechanism, and a large scale PS-SCED bracing specimen were conducted due to the low cyclic reversed loadings. Experimental results demonstrate that the proposed bracing system performs as predicted by the equations governing its mechanical behaviors, which exhibits a stable and repeatable flag-shaped hysteretic response with excellent self-centering capability and appreciable energy dissipation, and large ultimate bearing and deformation capacities. Results also show that almost no residual deformation occurs when the friction force is less than the initial pre-pressed force of disc springs.