• Title/Summary/Keyword: Combat Effectiveness

Search Result 143, Processing Time 0.026 seconds

A Study on the Analysis of NCW(Network Centric Warfare) Combat Effectiveness Using Cellular Automata Simulation (세포 자동차(Cellular Automata) 시뮬레이션을 이용한 네트워크 중심전 전투효과도 평가 연구)

  • Jeong, Seong-Jin;Jo, Seong-Jin;Hong, Seong-Pil
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.10a
    • /
    • pp.3-9
    • /
    • 2005
  • The recent notion of Network Centric Warfare (NCW) emphasizes the ability to distribute right information at the right time to maximize the combat effectiveness. Accordingly, in the modern combat system the importance of non-physical element, such as communication system is increasing. However, an NCW-support communication network system is expensive. Therefore, it is essential to develop a proper combat system evaluation method to establish an efficient NCW-support combat system. Traditionally, combat system effectiveness is measured in terms of physical elements such as men and fire power. Obviously, such method is hardly applicable to a modern combat system To overcome this difficulty, we propose an evaluation model based on CA (Cellular Automata) simulation. A set of preliminary combat simulations show that CA simulation may be promising in evaluating non-physical element of a modem combat system.

  • PDF

A Study on the Analysis of NCW (Network Centric Warfare) Combat Effectiveness Using Cellular Automata Simulation (세포 자동차 시뮬레이션을 이용한 네트워크 중심전 전투효과도 평가 연구)

  • Chung Sung-jin;Cho Sung-jin;Hong Sung-Pil
    • Korean Management Science Review
    • /
    • v.22 no.2
    • /
    • pp.135-145
    • /
    • 2005
  • The recent notion of Network Centric Warfare (NCW) emphasizes the ability to distribute the right information at the right time to maximize the combat effectiveness. Accordingly, in the modern combat system, the importance of non-physical elements, such as a communication system, is increasing. However, an NCW-support communication network system is expensive. Therefore, it is essential to develop a proper combat system evaluation method to establish an efficient NCW-support combat system. Traditionally, combat system effectiveness is measured in terms of physical elements such as men and fire power, Obviously, such method is hardly applicable to a modern combat system. To overcome this difficulty, we propose an evaluation model based on CA (Cellular Automata) simulation. A set of preliminary combat simulations show that CA simulation may be promising in evaluating non-physical element of a modern combat system.

The Functional Relationship of C2 System Enhancement and Combat Effectiveness Using Schutzer's C2 Theory and Measures of Effectiveness (Schutzer의 C2 효과측정 모델을 이용한 지휘통제체계 강화와 전투효과의 함수적 상관관계)

  • Lee, Jae-Yeong;Shin, Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.30 no.1
    • /
    • pp.65-75
    • /
    • 2004
  • The enhancement of C2(Command and Control) system will increase effectiveness of individual force power in combat engagement. Especially, available time of a given engaging force and information accuracy are the most influencing factors to increment of combat effectiveness after enhancement of C2 system. In this paper, by using Schutzer's C2 Theory and Measures of Effectiveness, we developed several analytical functions representing the relationships between C2 system enhancement and two most critical variables, available time and information accuracy. As a result of functional analysis, we showed C2 system enhancement and combat effectiveness have positive and non-linear relationship. The higher level of C2 system be required, the better combat effectiveness of force power can be obtained. Additionally, we proposed a proposition that the combat effectiveness of C2 system is more sensitive to available time than to information accuracy, which might be very important issue for further research in this field.

A Study on Evaluation of Combat Effectiveness in WMA-EA based on C2 Model (C2모델 기반 전장아키텍처의 전투효과 평가방안)

  • Park, Yang-Soo;Jung, Chan-Ki
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.619-626
    • /
    • 2010
  • ROK Joint Chiefs of Staff in developing an WMA-EA(Warfighting Mission Area-Enterprise Architecture) tries to create the practical buildup requirements of military power through precise requirements and operational capabilities based on the architectures. However, it is difficult to verify the effectiveness of target architectures and do efficient requirement planning because we cannot know the gap of quantitative combat effectiveness between current and target WMA-EAs. This study presents an evaluation method of combat effectiveness and focuses on combat's positive effects in WMA-EAs. The method proposed is based on C2 model which is appropriate for the evaluation of combat effectiveness in architectures. We verify the effectiveness of the proposed method through a case study of an anti-ship warfare architecture.

A Study on the Measuring of Combat Effectiveness for Naval Frigates Using Analytic Hierarchy Process (AHP를 이용한 해군 호위함 전투효과 측정에 관한 연구)

  • Kim, Kitae;Lim, Yojoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.1
    • /
    • pp.9-16
    • /
    • 2021
  • Modern combat has been extended to the concept of real-time response to a variety of threats simultaneously occurring in vast areas. In order to quick command determination and accurate engagement in these threats, the combat system has emerged in frigate. Frigates conduct anti-surface, anti-submarine, and anti-aircraft as the core forces of the fleet. In this study, the combat effectiveness measures naval frigates using AHP (analytic hierarchy process) method. A hierarchical structure for measuring the combat effectiveness was developed, and weights of criteria were calculated by expert surveys and pair-wise comparisons. In addition, the combat effectiveness of frigates was synthesized and compared. The weights for each attribute were calculated, and the weights for the three main attributes were in the order of act (0.594), evaluate (0.277), and see (0.129). As a result of calculating the weight, anti surface warfare (0.203) was the highest. The combat effectiveness of FFG Batch-III, which has advanced hardware and software and improved combat system capabilities, see (1.73 to 2.56 times), evaluate (1.68 to 2.08 times), and act (1.31 to 3.80 times) better than the comparative frigate. In summarizing the combat effects of the frigate, FFG Batch-III was 1.41~2.95 times superior to the comparative frigate. In particular, a group of experts evaluated the act importantly, resulting in better combat effectiveness.

A Study of Experimental Design for Unmanned Ground Vehicle Effectiveness Based on a Small Unit Combat Scenario (소부대 전투시나리오 기반의 UGV 효과분석 실험방안 연구)

  • Lee, Jaeyeong;Kim, Chongman;Park, Keonyoung;Kim, Junsoo;Sin, Sunwoo;Pyun, Jaijeong;Bae, Sungmin
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.4
    • /
    • pp.591-606
    • /
    • 2014
  • Purpose: The purpose of this study is to design an experimental simulation model for evaluating the UGV(Unmanned Ground Vehicle) effectiveness in a small unit combat scenario. Methods: We design and build a simulation model to evaluate the combat effectiveness of UGV in a small unit combat scenario. In order to build a simulation model, we used AnyLogic software tool which has functional advantages to describe agent-based simulation model. As for the combat scenario, we applied the typical engagement of mechanized unit equal or lower than battalion level. Analysis process follows the three phases. 1) Design an agent based conceptual medel in a small unit combat scenario. 2) Build a simulation medel using AnyLogic tool. 3) Analyze the simulation results and evaluate the UGV effectiveness. Results: The UGV effectiveness was measured and presented as a numeric values. Those numeric values were represented as a MOE(Measure of Effectiveness) which was the blue survival ratio. Conclusion: We developed an agent based simulation model which can provide a pattern of change how UGV effectiveness varied depending upon the number of UGV in a small unit combat scenario. We also found that the UGV effectiveness grows in the given scenario as the number of UGV increases.

A Study on the Analysis of Combat Effectiveness of the Army C2A System (육군 방공자동화체계 전투효과 분석에 관한 연구)

  • Choi Woo-Chan;Lee Jea-Young
    • Journal of the military operations research society of Korea
    • /
    • v.30 no.2
    • /
    • pp.63-80
    • /
    • 2004
  • This paper develops a methodology which can be used to quantify the combat effectiveness of the army C2A system by modifying C2 theory and using Air Defense Engagement Simulation. In this paper, by using Schutzer's C2 theory and Measures of Effectiveness, we modified the MOE formula he designed. Because the combat effectiveness by enhancement of C2(Command and Control) system will increase combat power of individual asset independently. In addition, we developed simulation analysis of air defense scenario by using Air Defense Engagement Simulation. The results show that modified the MOE formula is proper as compared with Air Defense Engagement Simulation method. The combat effectiveness can be obtained as a result of improved probability of detection and information accuracy through real-time information sharing and coordination by C2A system.

Analysis of UGV Communication Effectiveness focused on Message Complexity (메시지 복잡도를 중심으로한 UGV 통신효과 분석)

  • Chang, YooSang;Shin, SunWoo;SEO, DaYoon;Lee, JaeYeong;Kim, ChongMan;Yoo, CheolWoo;BAE, SungMin
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.3
    • /
    • pp.503-520
    • /
    • 2017
  • Purpose: In the near future, it is expected that UGV(unmanned ground vehicle) will be put into battle due to IT technology and unmanned technology development. In this study, we analyze the combat effectiveness considering communication effect where complex combat information and commands are transmitted. Methods: We use ABM(agent-based modeling) and wireless channel module which provides sophisticated communication effect through geographic information and UGV performance. And UGV combat simulation using wireless channel module is used to grasp the combat effectiveness according to the number of packets, which is a unit for storing all information and commands having high complexity. Results: The result of this study is to derive the optimal number of packets which does not decrease the combat effectiveness and the number of lost tanks. The number of packet increases, the survival ratio of our tanks are decreased. Conclusion: In this study, we reveal that the communication success or failure could affect the combat effectiveness. Also, it helps develope the standard communication protocol between UGVs and could be applied to analyze the cost effectiveness analysis in UGV combat environment.

Interrelation Analysis of UGV Operational Capability and Combat Effectiveness using AnyLogic Simulation (애니로직 시뮬레이션을 이용한 무인지상차량 운용성능과 전투효과의 연관성 분석)

  • Lee, Jaeyeong;Shin, Sunwoo;Kim, Junsoo;Bae, Sungmin;Kim, Chongman
    • Journal of Applied Reliability
    • /
    • v.15 no.2
    • /
    • pp.131-138
    • /
    • 2015
  • In modern warfare, the number of unmanned systems grow faster than any other weapon systems. Therefore, it is very important to predict and measure the combat effectiveness (CE) of unmanned weapon systems in battlefield for deciding defense budget to acquire those systems. In general, quantitative calculation of weapon effectiveness under complicated battlefield is difficult based on the future network centric warfare. Hence, many papers studied how to measure the combat effectiveness and tried to study a lot of related issues about it. However, there are few papers dealing with the relationship between the UGV (Unmanned Ground Vehicle)'s performance and CE in a ground battlefield. In this paper, we do the sensitivity analysis based on a given scenario in a small unit battle. In order to do that, we developed simulation model using AnyLogic and changed the input parameters such as detection and hitting probabilities. We also assess the simulation outputs according to the variation of input parameters. The MOE used in this simulation model output is survival ratio for Blue force. We hope that this paper will be useful to find which input variable is more effective to increase combat effectiveness in a small unit ground battlefield.

The Combat Effectiveness Analysis of Attack Helicopter Using Simulation and AHP (시뮬레이션 및 AHP기법을 이용한 공격헬기 전투효과 분석)

  • Lee, Jae-Moon;Jung, Chi-Young;Lee, Jae-Yeong
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.63-70
    • /
    • 2010
  • The purpose of this paper is to propose a methodology that can measure the combat effectiveness of attack helicopter which Korea army will be operating in the near future. To measure the combat effectiveness, firstly, we use a wargame model, AAsim (Army Aviation simulation), as a analytic simulation model which is used to analyze DOTMLPF and operation in army aviation field, secondly we use an Analytic Hierarchy Process by opinion of experts. For simulation and AHP, we consider anti armored corps operation reflecting attack helicopter's combat effectiveness. As a result of this study, the combat effectiveness per each attack helicopter can be measured and this combat effectiveness is useful for reasonable decision making such as selection helicopter type, quantity when acquiring new weapon system.