• Title/Summary/Keyword: Colossal magnetoresistance (CMR)

Search Result 19, Processing Time 0.032 seconds

Colossal Magnetoresistance in La-Ca-Mn-O

  • Jin, Sungho
    • Journal of Magnetics
    • /
    • v.2 no.1
    • /
    • pp.28-33
    • /
    • 1997
  • Very large in electrical resistivity by several orders of magnitude is obtained when an external magnetic field is applied to the colossal magnetoresistnace (CMR) materials such as La-Ca-Mn-O. The magnetoresistance is strongly temperature-dependent, and exhibits a sharp peak below room temperature, which can be shifted by adjusting the composition or processing parameters. The control of lattice geometry or strain, e.g., by chemical substitution, epitaxial growth or post-deposition anneal of thin films appears to be crucial in obtaining the CMR properties. The orders of magnitude change in electrical resistivity could be useful for various magnetic and electric device applications. .

  • PDF

Double Exchange Interaction in Colossal Magnetoresistance Compounds: $La_{1-\chi}X{\chi}MnO_3$ (초거대 자기저항 $La_{1-x}X_xMnO_3$ 화합물에서의 이중 교환 상호작용)

  • 유운종;이재동;민병일
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.1
    • /
    • pp.55-67
    • /
    • 1997
  • Double exchange interaction leads to the ferromagnetism by the direct coupling between conduction electrons and magnetic ions. The most intriguing feature of double exchange is the explicit connection of the conductivity with the magnetism, which has drawn much interest in relation to the colossal magnetoresistance (CMR) recently observed in manganese oxide compounds. In this review, we explain the basic physics of double exchange and examine the classical discussions.

  • PDF

Electronic Structures of Colossal Magnetoresistive (CMR) $Fe_{1-x}Cu_xCr_2S_4$Spinels (초거대자기저항(CMR) 현상을 보이는 Spinel $Fe_{1-x}Cu_xCr_2S_4$의 전자구조 연구)

  • 박민식;윤석주;민병일
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.3
    • /
    • pp.111-117
    • /
    • 1998
  • Recent discovery of colossal magnetoresistance (CMR) phenomena in perovskite manganese oxides has evoked great interest for its physical peculiarity and the possible industrial application. Besides manganese oxides, CMR phenomena is also observed in $Tl_2Mn_2O_7$ with pyrochlore structure and in Cr-based chalcogenide with spinel structure. In this paper, we have studied electronic structures of Cr-based chalcogenide spindles $Fe_{1-x}Cu_xCr_2S_4$ at x=0.0, 0.5, 1.0 using the linearized muffin-tin orbital (LMTO) band method within the local density approximation (LDA). The characteristic resistivity for x=0.0, 0.5 could be explained qualitatively in terms of the half-metalic electronic structure and the Jahn-Teller effect. Especially, the half-metallic nature appearing in the metallic temperature regime is well descibed by the proposed conduction model for x=0.0, 0.5, 1.0. We have suggested, based on the conduction model, that the CMR phenomena observed in these compounds are closely correlated with the obtained half-metallic electronic structure.

  • PDF

Studies on the Fabrication and Properties of $La_{1-x}Ca_xMnO_3$ by Glycine-Nitrate Process and Solid State Reaction Method fort the CMR sensor (CMR sensor 응용을 위한 자발착화 연소합성법(GNP)과 고상반응법에 의한 $La_{1-x}Ca_xMnO_3$ 분말의 제조 및 물성에 관한 연구)

  • Kang, Young-Chul;Park, Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.137-141
    • /
    • 1999
  • 금속 다층박막과 미세입상 합금박막에서 발견된 Giant Magnetoresistance(GMR) 현상에 고무되어 최근에는 50년대에 밝혀졌던 산화물 자기저항 재료에 관하여 새롭게 연구하고 있으며 perovskite 구조를 가지는 La$_{1-x}$ Ca/xub x/MnO$_{3}$ 박막에서 큰 자기저항을 얻었으며 이를 Colossal Magentoresistance (CMR) 이라 부른다. 본 연구에서는 La$_{1-x}$ Ca/xub x/MnO$_{3}$ 분말을 하소온도를 700-90$0^{\circ}C$로 변화시킨 고상반응법과 자발착화연소합성법(Glycine-Nitrate Process) 으로 각각 제조하였으며 비교 분석하였다. TG-DTA을 이용하여 불순물과 미반응 물질을 확인하여 적당한 하소 온도를 결정하였고 XRD를 이용하여 결정상을 분석하였다. 주사전자현미경(SEM)으로 각각 제조된 분말의 하소후 입자의 크기를 비교하였다. GNP법으로 합성한 경우가 고상반응법을 이용한 경우보다 입자의 크기가 submicron 단위로 미세하고 균질하며 고순도의 perovskite 구조를 갖는 La$_{1-x}$ Ca/xub x/MnO$_{3}$ 분말을 얻을 수 있었다.었다.

  • PDF

Structural and temperature coefficient of resistance characteristics of colossal magnetoresistance Mn oxides prepared by RF sputtering

  • Choi, Sun-Gyu;Ha, Tae-Jung;Reddy, A.Sivasankar;Yu, Byoung-Gon;Park, Hyung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.361-361
    • /
    • 2007
  • A lot of efforts have been paid to develop infrared imaging systems in last decades. Bolometer has a wide range of applications from military to commercial, such as military night vision, medical imaging system and so on. Bolometer is a resistive sensor that detects temperature changes through resistance change. To improve detecting ability, bolometer should have a good resistive film which has high temperature coefficient of resistance (TCR) value. Colossal magnetoresistance (CMR) $L_{1-x}A_xMnO_3$ (where L and A are trivalent rare-earth ions and divalent alkaline earth ions, respectively.) are received attention to apply bolometer resistive film because it has a high TCR property which was discovered in the metal to semiconductor phase transition temperature region. In this work, CMR films were deposited on various substrates in relative low substrate temperature by RF magnetron sputtering. The influence of deposition parameters such as substrate temperature, gas partial pressure, and so on have been studied. The structural and TCR properties of the films were also investigated for applying to microbolometer.

  • PDF

Syntheses and Characteristics of $Ln_xCa_{2-x}MnO_4$ {Ln=Gd, Nd, Pr, Sm} ($Ln_xCa_{2-x}MnO_4$ 상의 합성과 특성에 관한 연구 {Ln=Gd, Nd, Pr, Sm})

  • Seo, Sang-Il;Lee, Jai-Yeoul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.196-199
    • /
    • 2000
  • Since the reports of CMR(colossal magnetoresistance) effects in some single crystal R-P phase $La_{1+x}Sr_{2-x}Mn_2O_7$, considerable researches have been carried out to find optimum composition and to understand the role of dimensionality in the CMR mechanism of this system. In this study, layered perovskite $Ln_xCa_{1-x}MnO_{4}$ (x=0.5, Ln=Pr, Nd, Sm, Gd) phases were synthesized by solid state reaction and their structures were refined by Rietveld method. Electrical and magnetic properties were measured between room temperature and liquid helium temperature and compared with those of two dimensional $La_{1.4}Sr_{1.6}Mn_2O_7$ phase.

  • PDF

Colossal Magnetoresistance in Chalcogenide Spinels $Ni_xFe_{1-x}Cr_2S_4(X = 0.05, 0.1, 0.2)$ (Spinel 유화물 $Ni_xFe_{1-x}Cr_2S_4(X = 0.05, 0.1, 0.2)$의 초거대자기저항(CMR)현상에 관한 연구)

  • 박재윤
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.4
    • /
    • pp.151-156
    • /
    • 2001
  • Recently many studies on manganese oxides Ln$_{1-x}$A$_{x}$MnO$_3$(Ln=La, Pr, Nd lanthannide; A=Ca, Sr, Ba, Pb +2 ions) reported CMR properties. CMR have been also found in chalcogenide spinels. We have investigated that Ni ion substitutions for Fe ion have effects on CMR properties in chacogenide spinels Ni$_{x}$Fe$_{1-x}$Cr$_2$S$_4$. It was found that with increasing Ni concentration Jahn-Teller distortion was strengthened and Curie temperature T$_{c}$ was increased. CMR properties could be explained with Jahnl-Teller effect, half-metallic electronic structure, and the alignment of magnetic domain due to the strong magnetic field, which is different in that double exchange interactions dominate CMR properties in manganese oxides.

  • PDF

Powder Preparation and Electrical and Magnetic Properties of ${La_{0.7}}{Ca_{0.3}}{MnO_3}$by Solution Combustion Method for CMR Applications (용액연소법에 의한 CMR용 ${La_{0.7}}{Ca_{0.3}}{MnO_3}$분말 제조 및 전기.자기적 특성)

  • Lee, Kang-Ryeol;Min, Bok-Ki;Park, Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.6
    • /
    • pp.551-557
    • /
    • 2001
  • La$_{0.7}$Ca$_{0.3}$MnO$_3$분말을 용액연소법으로 제조하였으며 분말 특성과 CMR에 응용하기 위해 박막의 전기적, 자기적 특성을 조사하였다. 조성과 구조 특성을 XRD와 SEM으로부터 조사하였으며 분말의 하소온도를 TG 분석으로부터 결정하였다. 또한 소결성은 dilatometer에 의해 조사되었으며 분말 특성은 BET에 의해 조사되었다. 소결성이 우수한 분말을 이용하여 스퍼터 타겟으로 제조하였으며 SiO$_2$/Si 기판 위에 스퍼터링한 후, 온도에 따른 four point probe 측정으로 막의 MR비를 측정하였다. VSM (Vibrating Sample Magnetometer)를 이용하여 증착된 막의 온도에 따른 자화율(Magnetization:M)을 측정하였다. 분말 특성으로는 평균입자 크기가 sub-micron 이하로 초미세하고 49.44$m^2$/g의 비표면적 값을 얻을 수 있었으며 고순도의 perovskite 구조를 갖는 La$_{0.7}$Ca$_{0.3}$MnO$_3$분말을 쉽게 얻을 수 있었다. 온도에 따른 저항값의 변화로부터 96K에서 최고의 MR값을 얻을 수 있었으며, 240K에서 강자성체로 전이되었다.로 전이되었다.

  • PDF

Electrical and Magnetic Properties in [La0.7(Ca1-xSrx)0.3MnO3)]0.99/(BaTiO3)0.01 Composites

  • Kim, Geun-Woo;Bian, Jin-Long;Seo, Yong-Jun;Koo, Bon-Heun
    • Korean Journal of Materials Research
    • /
    • v.21 no.4
    • /
    • pp.216-219
    • /
    • 2011
  • Perovskite manganites such as $RE_{1-x}A_xMnO_3$ (RE = rare earth, A = Ca, Sr, Ba) have been the subject of intense research in the last few years, ever since the discovery that these systems demonstrate colossal magnetoresistance (CMR). The CMR is usually explained with the double-exchange (DE) mechanism, and CMR materials have potential applications for magnetic switching, recording devices, and more. However, the intrinsic CMR effect is usually found under the conditions of a magnetic field of several Teslas and a narrow temperature range near the Curie temperature ($T_c$). This magnetic field and temperature range make practical applications impossible. Recently, another type of MR, called the low-field magnetoresistance(LFMR), has also been a research focus. This MR is typically found in polycrystalline half-metallic ferromagnets, and is associated with the spin-dependent charge transport across grain boundaries. Composites with compositions $La_{0.7}(Ca_{1-x}Sr_x)_{0.3}MnO_3)]_{0.99}/(BaTiO_3)_{0.01}$ $[(LCSMO)_{0.99}/(BTO)_{0.01}]$were prepared with different Sr doping levels x by a standard ceramic technique, and their electrical transport and magnetoresistance (MR) properties were investigated. The structure and morphology of the composites were studied by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). BTO peaks could not be found in the XRD pattern because the amount of BTO in the composites was too small. As the content of x decreased, the crystal structure changed from orthorhombic to rhombohedral. This change can be explained by the fact that the crystal structure of pure LCMO is orthorhombic and the crystal structure of pure LSMO is rhombohedral. The SEM results indicate that LCSMO and BTO coexist in the composites and BTO mostly segregates at the grain boundaries of LCSMO, which are in accordance with the results of the magnetic measurements. The resistivity of all the composites was measured in the range of 90-400K at 0T, 0.5T magnetic field. The result indicates that the MR of the composites increases systematically as the Ca concentration increases, although the transition temperature $T_c$ shifts to a lower range.

Characteristics of La0.2Ca0.8MnO3 Powder and Pellet Prepared by Sol-Gel Process (졸-겔법으로 합성한 La0.2Ca0.8MnO3의 분말과 펠렛의 특성)

  • Jung, Miewon;Lee, Jiyun;Kim, Hyunjung
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.150-152
    • /
    • 2005
  • $La_{0.2}Ca_{0.8}MnO_3$ colossal magnetoresistance (CMR) powders and pellets were synthesized by sol-gel process involving a stable metal chelate complex with acetylacetone. The structural changes of reaction mixture were monitored by FT-IR spectroscopy and X-ray diffractometry. The microstructure of sintered samples and the cation composition of gel powder were studied by FE-SEM/EDS and ICP-AES. The magnetic property was investigated as a function of temperature.