Colossal Magnetoresistance in La-Ca-Mn-O

  • Published : 1997.03.01

Abstract

Very large in electrical resistivity by several orders of magnitude is obtained when an external magnetic field is applied to the colossal magnetoresistnace (CMR) materials such as La-Ca-Mn-O. The magnetoresistance is strongly temperature-dependent, and exhibits a sharp peak below room temperature, which can be shifted by adjusting the composition or processing parameters. The control of lattice geometry or strain, e.g., by chemical substitution, epitaxial growth or post-deposition anneal of thin films appears to be crucial in obtaining the CMR properties. The orders of magnitude change in electrical resistivity could be useful for various magnetic and electric device applications. .

Keywords

References

  1. Science v.264 S. Jin;T. H. Tiefel;M. McCromack;R. A. Fastnacht;R. Ramesh;L. H. Chen
  2. J. Appl. Phys. v.76 S. Jin;M. McCormack;T. H. Tiefel;R. Ramesh
  3. J. Sol. State Chem. v.117 B. Raveau;A. Maignan;V. Caignaert
  4. Appl. Phys. Lett. v.65 H. L. Ju;C. Kwon;Q. Li;L. Green;T. Venkatesan
  5. Appl. Phys. Lett. v.67 G. Gong;C. Canedy;G. Xiao;J. Sun;A. Gupta;W. J. Gallagher
  6. Appl. Phys. Lett. v.69 S. K. Singh;S. B. Palmer;D. Mck. Paul;M. R. Lees
  7. Phys. Rev. Lett. v.75 P. Schiffer;A. P. Ramirez;W. Bao;S. W. Cheong
  8. Phys. Rev. Lett. v.71 R. von Helmolt;J. Wecker;B. Holzapfel;L. Schultz;K. Samwer
  9. Appl. Phys. Lett. v.63 K. Chahara;T. Ohno;M. Kasai;Y. Kozono
  10. Appl. Phys. Lett. v.66 S. Jin;H. M. O'Bryan;T. H. Tiefel;M. McCromack;W. W. Phodes
  11. Phys. Rev. Lett. v.75 H. Y. Hwang;S. W. Cheong;P. G. Radaelli;M. Marezio;B. Batlogg
  12. Appl. Phys. Lett. v.67 J. Z. Sun;L. Krusin-Elbaum;S. S. P. Parkin;G. Xiao
  13. Phys. Rev. Lett. v.74 Y. Tomika;A. Asamitsu;Y. Moritomo;H. Kuwahara;Y. Tikura
  14. Appl. Phys. Lett. v.67 S. Jin;T. H. Tiefel;M. McCormack;H. M. O'Bryan;L. H. Chen;R. Ramesh;D. Schurig
  15. Appl. phys. Lett. v.67 A. Gupta;T. R. McGuire;P. R. Duncombe;M. Rupp;J. Z. Sun;W. J. Gallagher;G. Xiao
  16. Physics Today J.L. Simond
  17. Physics Today G.A. Prinz
  18. Appl. Phys. Lett. J. Z. Sun;L. Krusin-Elbaum;P. R. Duncome;A. Gupta;R. B. Laibowitz
  19. Physica v.16 G. H. Jonker;J. H. van Santen
  20. Phys. Rev. v.100 E. O. Wollan;W. C. Koethler
  21. Phys. Rev. v.118 P. G. deGennes
  22. Phys. Rev. v.100 J. B. Goodenough
  23. J. Solid State Chem. v.10 B. C. Tofield;W. R. Scott
  24. Canadian J. Phys. v.48 C. W. Searle;S. T. Wang
  25. Phys. Rev. v.82 C. Zener
  26. Progress in Solid State Chemistry v.5 J. B. Goodenough;H. Reiss
  27. Physica v.B155 R. M. Kusters;J. Singleton;D. A. Keen;R. McGreevy;W. Hayes
  28. Can J. Physics v.47 L. K. Leung;A. H. Morrish;C. W. Searle
  29. Phys. Rev. Lett. v.66 S. S. P. Parkin;R. Bhadra;K. P. Roche
  30. Phys. Rev. v.B45 B. Dieny;P. Humbert;V. S. Speriosu;S. Metin;B. A. Gurney;P. Baumgart;H. Lefakis
  31. Appl. Phys. Lett. v.63 E. E. Fullerton;M. J. Conover;J. E. Mattson;C. H. Sowers;S. D. Bader
  32. Appl. Phys. Lett. v.63 L. H. Chen;T. H. Tiefel;S. Jin;R. B. van Dover;E. M. Gyorgy;R. M. Fleming
  33. Phys. Rev. Lett. v.68 A. E. Berkowitz;J. R. Mitchell;M. J. Carey;A. P. Young;S. Zhang;F. E. Spada;F. T. Parker;A. Hutten;G. Thomas
  34. Science v.265 P. M. Levy
  35. Science v.261 T. L. Hylton;K. R. Coffey;M. A. Parker;J. K. Howard