• Title/Summary/Keyword: Colorimetric transition

Search Result 7, Processing Time 0.022 seconds

Role of Gel to Fluid Transition Temperatures of Polydiacetylene Vesicles with 10,12-Pentacosadiynoic Acid and Cholesterol in Their Thermochromisms

  • Kwon, Jun Han;Song, Ji Eun;Yoon, Bora;Kim, Jong Man;Cho, Eun Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1809-1816
    • /
    • 2014
  • This study demonstrates gel-to-fluid transition temperatures of polydiacetylene bilayer vesicles could play important roles in their colorimetric transition temperatures. We prepared five types of polydiaceylene vesicles with 10,12-pentacosadiynoic acid (PCDA) and cholesterol (0-40 mol % of total content). From temperature-dependent observations of the optical signals (colors and UV-vis spectra), the blue-to-red colorimetric transition temperatures of polydiacetylene vesicles were decreased with the cholesterol contents. A further study with microcalorimetry and dynamic light scattering revealed that the polydiacetylene vesicles first underwent gel-to-fluid transitions, which were followed by event(s) responsible for the colorimetric transitions. Energies required for each event were quantified from analysis of the peaks in the microcalorimetry thermograms. The inclusion of cholesterol in the vesicles decreased both the gel-to-fluid and the colorimetric transition temperatures, suggesting that the colorimetric transition of the polydiacetylene vesicles was mediated by the former event although the event was not the direct reason for the color change.

Colorimetric Detection of Chelating Agents Using Polydiacetylene Vesicles (폴리다이아세틸렌 베시클을 이용한 킬레이트제의 색전이 검출)

  • Park, Moo-Kyung;Kim, Kyung-Woo;Ahn, Dong-June;Oh, Min-Kyu
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.348-351
    • /
    • 2011
  • In this research, we developed a sensor system which can easily detect several chelating agents using polydiacetylene(PDA) vesicles. In comparison to other sensors, PDA based sensor has several advantages. First, detection method is much simpler and faster because it does not require any labeling step in the experiment procedure. Second, significant color-transition from blue to red based upon external stimulus allows us the detection by naked eyes. Finally, it is also possible to perform quantitative analysis of the concentration of the chelating agent by measuring the colorimetric response. In this paper, five types of chelating agents were used, including EDTA, EGTA, NTA, DCTA and DTPA. Among them, EDTA and DCTA triggered especially strong color-transition. In conclusion, this study has led to a successful development of a color transition-based PDA sensor system for easy and rapid detection of chelating agents.

Syntheses and Ion Selectivities of Dimeric Rhodamine 6G Chemosensors

  • Chang, Seung Hyun;Choi, Jin-Wook;Chung, Kwang-Bo
    • Journal of Environmental Science International
    • /
    • v.22 no.10
    • /
    • pp.1273-1278
    • /
    • 2013
  • Novel rhodamine 6G fluorescent chemosensors 1 and 2 for the detection of transition metal cations were synthesized through the condensation of rhodamine 6G ethylenediamine with each of 2-hydroxy-1-naphthaldehyde and 2,6-pyridinedicarbaldehyde, respectively. 1 and 2 were characterized using $^{13}C$ NMR, $^1H$ NMR and mass spectroscopy. Fluorometric and colorimetric measurements involving various metal ions revealed the ring opening of the rhodamine 6G spirocycle framework. In the absence of metal cations, 2 was colorless and non-fluorescent, whereas the addition of metal cations ($Hg^{2+}$ and others) changed the color to pink, accompanied by the appearance of an orange fluorescence. The chemosensors exhibited high selectivity for $Hg^{2+}$ over other divalent first-row transition metals. The complexes of $Hg^{2+}$ with 1 and 2 were successfully isolated. A huge enhancement in the fluorescence for both one- and two-photon excitations makes these compounds suitable candidates to be used for fluorescent labeling of biological systems.

A Quinoline carboxamide based Fluorescent Probe's Efficient Recognition of Aluminium Ion and its Application for Real Time Monitoring

  • Manivannan, Ramalingam;Ryu, Jiwon;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.32 no.4
    • /
    • pp.185-192
    • /
    • 2020
  • A novel binding site for metal ion made by designing molecule with tetrazolo quinoline with hydrazine carboxamide (TQC) and the designed molecule successfully synthesized. The probe works by selectively detecting Al3+ ion via both fluorimetric and colorimetric approach. The probe's effectiveness towards aluminium ion detection is highly sensitive and selective with no substantial interference with other competing ions. The added Al3+ ion to TQC fetched a rapid change of visual color to yellow from colorless, also the response of fluorescence turn-on. The fluorescence turn-on and color change visibly by the probe TQC with Al3+ ion credited to the ICT phenomenon (intramolecular charge-transfer transition). The likely interaction of the probe with aluminium ion has also been there predicted from ESI-MS spectral analysis results. The usefulness of the probe confirmed by practical utility by making a test kit to monitor Al3+ ion in water which showed a naked eye detection by notable color change.

Characteristics of PEGylated Polydiacetylene Liposome and its Inclusion Complex Formation with α-Cyclodextrin

  • Choi, Hye;Choi, Joon Sig
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.3083-3087
    • /
    • 2013
  • Diacetylene lipid monomers possess the capability to self-assemble into vesicles via polymerization under ultraviolet irradiation, resulting in the formation of polydiacetylene (PDA) liposomes. Exposure of the polymerized vesicles to external stimuli is known to induce a unique blue-to-red color transition. The cyclic oligosaccharide ${\alpha}$-cyclodextrin known for its use in many applications, such as drug delivery, purification, and stimulus sensing, is able to form an inclusion complex with poly(ethylene glycol) (PEG) in aqueous solution. In this study, we prepared polymeric liposomes with PEG (PEG-PDA) with the aim of improving the stability of the vesicles and colorimetric response toward ${\alpha}$-cyclodextrin. We demonstrated that PEG-PDA liposome displays unique characteristics compared with native PDA liposome and it also shows apparent chromic properties of the inclusion complex formation with ${\alpha}$-cyclodextrin.

Analyzing Optical Water Type Using Digital Visualization (광학적 수형의 디지털 시각화를 이용한 수색분석)

  • Sokjin Choi;Sungil Hwang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.6
    • /
    • pp.923-929
    • /
    • 2023
  • This study investigated the optical characterization of water types based on Jerlov's classification, employing the CIE colorimetric system. Digital visualization techniques were applied to articulate watercolor manifestations intuitively. The L* luminance parameter exhibited a discernible reduction from optical water type I III and from type 1 to 9, registering a range between 66 and 84. Analysis of color attributes in each optical water type revealed that in the transition from type I to III, the color a* values spanned from -7.43 to -8.32, while color b* values ranged from -2.97 to -3.33. a* values for optical water types 1 to 9 varied between -6.28 and -10.50, with corresponding b* values ranging from -2.51 to -4.20. Consequently, optical water type I, IA, IB, II, and III were discretely categorized by independent color values, as were optical water types 1, 3, 5, 7, and 9. The digitized representation of watercolor in this inquiry facilitated comprehensive information asso,o;atopm. The study highlights limitations in Jerlov's classification for representing watercolors in different ocean conditions. It emphasized the need to collect color data from various marine areas and formulate a novel color standard or method for comparing colors.