DOI QR코드

DOI QR Code

Colorimetric Detection of Chelating Agents Using Polydiacetylene Vesicles

폴리다이아세틸렌 베시클을 이용한 킬레이트제의 색전이 검출

  • Park, Moo-Kyung (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Kyung-Woo (Department of Chemical and Biological Engineering, Korea University) ;
  • Ahn, Dong-June (Department of Chemical and Biological Engineering, Korea University) ;
  • Oh, Min-Kyu (Department of Chemical and Biological Engineering, Korea University)
  • 박무경 (고려대학교 화공생명공학과) ;
  • 김경우 (고려대학교 화공생명공학과) ;
  • 안동준 (고려대학교 화공생명공학과) ;
  • 오민규 (고려대학교 화공생명공학과)
  • Published : 2011.06.30

Abstract

In this research, we developed a sensor system which can easily detect several chelating agents using polydiacetylene(PDA) vesicles. In comparison to other sensors, PDA based sensor has several advantages. First, detection method is much simpler and faster because it does not require any labeling step in the experiment procedure. Second, significant color-transition from blue to red based upon external stimulus allows us the detection by naked eyes. Finally, it is also possible to perform quantitative analysis of the concentration of the chelating agent by measuring the colorimetric response. In this paper, five types of chelating agents were used, including EDTA, EGTA, NTA, DCTA and DTPA. Among them, EDTA and DCTA triggered especially strong color-transition. In conclusion, this study has led to a successful development of a color transition-based PDA sensor system for easy and rapid detection of chelating agents.

본 연구에서는 폴리다이아세틸렌(polydiacetylene, PDA) 베시클을 이용하여 여러 가지 킬레이트제(chelating agent)를 쉽게 검출할 수 있는 센서 시스템을 개발하였다. 다른 센서들과 비교하여 PDA기반 센서는 많은 장점이 있다. 첫째로, 형광물질의 부착이 필요 없는 무표지 검출(label-free detection)이 가능하여 실험 절차가 간단하고 빠르다. 둘째로, PDA는 청색에서 외부 자극에 의해 적색으로 변화하는 색전이를 일으키므로 육안으로 쉽게 검출을 확인할 수 있었다. 끝으로, 특정 파장에서의 colorimetric response를 측정하여 각각의 킬레이트제의 농도에 따른 정량검출도 가능하다. 본 연구에서는 5가지 종류의 킬레이트제, 즉 EDTA, EGTA, NTA, DCTA, DTPA를 PDA 베시클과 반응시켰으며, 이중에서 EDTA, DCTA는 특히 강한 반응으로 PDA의 색전이를 유도함을 알 수 있었다. 본 연구를 통하여 PDA 베시클을 사용하여 어떠한 기계나 동력을 사용하지 않고 색전이를 이용하여 킬레이트를 성공적으로 검출할 수 있음을 보여주었다.

Keywords

References

  1. Lee, N. Y., Jung, Y. K. and Park, H. G., "On-chip Colorimetric Biosensor Based on Polydiacetylene(PDA) Embedded in Photopolymerized Poly(Ethylene glycol) Diacrylate(PEG-DA) Hydrogel," Biochem. Eng. J., 29, 103-108(2006). https://doi.org/10.1016/j.bej.2005.02.025
  2. Ahn, D. J. and Kim, J. M., "Fluorogenic Polydiacetylene Supramolecules: Immobilization, Micropatterning, and Application to Label-Free Chemosensors," Accounts. Chem. Res., 41, 805-816(2008). https://doi.org/10.1021/ar7002489
  3. Jelinek, R. and Kolusheva, S., "Biomolecular Sensing with Colorimetric Vesicles," Top. Curr. Chem., 277, 155-180(2007). https://doi.org/10.1007/128_2007_112
  4. Ji, E. K., Ahn, D. J. and Kim, J. M., "The Fluorescent Polydiacetylene Liposome," B. Kor. Chem. Soc., 24, 667-670(2003). https://doi.org/10.5012/bkcs.2003.24.5.667
  5. Kim, J. M., Ji, E. K., Woo, S. M., Lee, H. W. and Ahn, D. J., "Immobilized Polydiacetylene Vesicles on Solid Substrates for Use as Chemosensors," Adv Mater 15, 1118-1121(2003). https://doi.org/10.1002/adma.200304944
  6. Lee, S. S., Chae, E. H., Ahn, D. J., Ahn, K. H. and Yeo, J. K., "Shear- Induced Color Transition of PDA (Polydiacetylene) Liposome in Polymeric Solutions," Korea-Aust Rheol. J., 19, 43-47(2007).
  7. Su, Y. L., Li, J. R. and Jiang, L., "A Study on the Interactions of Surfactants with Phospholipid/Polydiacetylene Vesicles in Aqueous Solutions," Colloid. Surface. A., 257-58, 25-30(2005).
  8. Yoon, B., Lee, S. and Kim, J. M., "Recent Conceptual and Technological Advances in Polydiacetylene-Based Supramolecular Chemosensors," Chem. Soc. Rev., 38, 1958-1968(2009). https://doi.org/10.1039/b819539k
  9. Cheng, Q. and Stevens, R. C., "Charge-Induced Chromatic Transition of Amino Acid-Derivatized Polydiacetylene Liposomes," Langmuir, 14, 1974-1976(1998). https://doi.org/10.1021/la980185b
  10. Jung, Y. K., Park, H. G. and Kim, J. M., "Polydiacetylene (PDA)- Based Colorimetric Detection of Biotin-Streptavidin Interactions," Biosens. Bioelectron, 21, 1536-1544(2006). https://doi.org/10.1016/j.bios.2005.07.010
  11. Ahn, D. J., Chae, E. H., Lee, G. S., Shim, H. Y., Chang, T. E., Ahn, K. D. and Kim, J. M., "Colorimetric Reversibility of Polydiacetylene Supramolecules Having Enhanced Hydrogen-Bonding under Thermal and pH Stimuli," J. Am. Chem. Soc. 125, 8976-8977(2003). https://doi.org/10.1021/ja0299001
  12. Chen, X. Q., Lee, J., Jou, M. J., Kim, J. M. and Yoon, J., "Colorimetric and Fluorometric Detection of Cationic Surfactants Based on Conjugated Polydiacetylene Supramolecules," Chem Commun, 23, 3434-3436(2009).
  13. Jung, Y. K., Kim, T. W., Kim, J., Kim, J. M. and Park, H. G., "Universal Colorimetric Detection of Nucleic Acids Based on Polydiacetylene( PDA) Liposomes," Adv. Funct. Mater., 18, 701-708 (2008). https://doi.org/10.1002/adfm.200700929
  14. Kim, J. M., Lee, J. S., Lee, J. S., Woo, S. Y. and Ahn, D. J., "Unique Effects of Cyclodextrins on the Formation and Colorimetric Transition of Polydiacetylene Vesicles," Macromol Chem Physic 206, 2299-2306(2005). https://doi.org/10.1002/macp.200500331
  15. Lee, J., Jun, H. and Kim, J., "Polydiacetylene-Liposome Microarrays for Selective and Sensitive Mercury(II) Detection," Adv Mater 21, 3674-3677(2009). https://doi.org/10.1002/adma.200900639
  16. Lee, J., Kim, H. J. and Kim, J., "Polydiacetylene Liposome Arrays for Selective Potassium Detection", J. Am. Chem. Soc., 130, 5010-5011 (2008). https://doi.org/10.1021/ja709996c
  17. Pan, J. J. and Charych, D., "Molecular Recognition and Colorimetric Detection of Cholera Toxin by Poly(Diacetylene) Liposomes Incorporating G(M1) Ganglioside," Langmuir 13, 1365-1367(1997). https://doi.org/10.1021/la9602675
  18. Rangin, M. and Basu, A., "Lipopolysaccharide Identification with Functionalized Polydiacetylene Liposome Sensors," J. Am. Chem. Soc. 126, 5038-5039(2004). https://doi.org/10.1021/ja039822x
  19. Ryu, S., Yoo, I., Song, S., Yoon, B. and Kim, J. M., "A Thermoresponsive Fluorogenic Conjugated Polymer for a Temperature Sensor in Microfluidic Devices," J. Am. Chem. Soc., 131, 3800-3801 (2009). https://doi.org/10.1021/ja808077d
  20. Kim, K. W., Choi, H., Lee, G. S., Ahn, D. J. and Oh, M. K., "Effect of Phospholipid Insertion on Arrayed Polydiacetylene Biosensors," Colloids Surf B Biointerfaces 66, 213-217(2008). https://doi.org/10.1016/j.colsurfb.2008.06.020
  21. Kennedy, K. J., Andras, E., Elliott, C. M. and Methven, B., "Effect of a Chelating Agent (DTPA) on Anaerobic Waste-Water Treatment in an Upflow Sludge Blanket Filter," Can. J. Civil. Eng., 18, 53-57(1991). https://doi.org/10.1139/l91-007
  22. Dubrovskii, I. Y., Tretyakov, Y. M., Loshkarev, V. A., Batalina, L. N. and Bulavko, A. Y., "Effect of Adding Chelating Agent on Behavior of Water under Supercritical Conditions in Contact with Magnetite," Therm Eng., 25, 68-69(1978).
  23. Jung, Y., Kim, T., Park, H. and Soh, H., "Specific Colorimetric Detection of Proteins Using Bidentate Aptamer Conjugated Polydiacetylene (PDA) Liposomes," Adv. Funct. Mater., 20, 3092-3097 (2010). https://doi.org/10.1002/adfm.201001008
  24. Xia, Y. T., Deng, J. L. and Jiang, L., "Simple and Highly Sensitive Detection of Hepatotoxin Microcystin-lr via Colorimetric Variation Based on Polydiacetylene Vesicles," Sensor. Actuat. B-Chem., 145, 713-719(2010). https://doi.org/10.1016/j.snb.2010.01.029
  25. Seo, D. and Kim, J., "Effect of the Molecular Size of Analytes on Polydiacetylene Chromism," Adv. Funct. Mater., 20, 1397-1403 (2010). https://doi.org/10.1002/adfm.201000262
  26. Su, Y., Li, J. and Jiang, L., "Effect of Amphiphilic Molecules upon Chromatic Transitions of Polydiacetylene Vesicles in Aqueous Solutions," Colloids and Surfaces B: Biointerfaces 39, 113-118 (2004). https://doi.org/10.1016/j.colsurfb.2003.12.005
  27. Ahn, D. J., Lee, S. and Kim, J. M., "Rational Design of Conjugated Polymer Supramolecules with Tunable Colorimetric Responses," Adv. Funct. Mater., 19, 1483-1496(2009). https://doi.org/10.1002/adfm.200801074