References
- Boening, D. W., 2000, Ecological effects, transport, and fate of mercury: a general review, 40: 1335-1351. https://doi.org/10.1016/S0045-6535(99)00283-0
-
Chang, S. H., Choi, J. W., Chung, K. B., 2012, Synthesis of Crown Ether chemosensor containing Rhodamine selectivity on
$Fe^{3+}$ . Ksist, 2: 20-26. - Chang, S. H., Kim, J. Y., 1994, Synthesis of novel bis-crown ether(I):crown ethers with siloxane moiety, J Kor Chem Soc, 38: 377-381.
- Czarnik, A. W., Desvergne, J. P., 1995, Chemosensors of ion and molecule recognition. Chem Biol, 492: 245.
- De silva, A. P., Gunaratne, H. Q. N., Gunnlaugsson, T., Huxley, A. J. M., McCoy, C. P., Rademacher, J. T., Rice, T. E, 1997, Signaling recognition events with fluorescent sensors and switches. Chem Rev, 97: 1515-1566. https://doi.org/10.1021/cr960386p
- Huang, Z. B., Kang, T. J., Chang, S. H., 2005, The synthesis of unique structures of tetra-crown ethers through Michael addition. Tetrehedron Lett, 46: 3461-3464. https://doi.org/10.1016/j.tetlet.2005.03.120
- Huang, Z. B., Chang, S. H., 2005, Synthesis and characterization of novel ionophores of double-armed pentacrown ether. Tetrahedron Lett, 46: 5351-5355. https://doi.org/10.1016/j.tetlet.2005.06.006
- Huang, Z. B., Chang, S. H., 2005, Synthesis of Unique ionophoress of penta-crown ethers. Syn Lett: 2257-2259.
- Johnsson, N., Johnsson, K., 2007, Chemical tools for biomolecular imaging. ACS Chem Biol: 2, 31-38. https://doi.org/10.1021/cb6003977
- Kumar, N., 2006, Copper deficiency myelopathy 81. Mayo Clinic Proceedings: 1371-1384.
- Lee, M. H., Kim, H. J., Yoon, S., Park, N., Kim. J. S., 2008, Metal ion induced FRET OFF-N in tren/dansylappended rhodamine. Org Lett, 10: 213-216.
- Myers, G. J., Davidson, P, W., Weis. B., 2004, SMDJ Seychelles Med Dent J 7: 132.
- Malm, O., 1998, Gold mining as a source of mercury exposure in the Brazilian Amazon. Environ Res, 77: 73-78. https://doi.org/10.1006/enrs.1998.3828
- Renzoni, A., Zino, F., Franchi, E., 1998, Mercury levels along the food chain and risk for exposed populations. Environ Res, 77: 68-72. https://doi.org/10.1006/enrs.1998.3832
- Valeurand, B., Leray, I., 2000, Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev, 205: 3-40. https://doi.org/10.1016/S0010-8545(00)00246-0
-
Wu, J. S., Hwang, I. C., Kim, K. S., Kim, J. S., 2007, Rhodamine-based
$Hg^{2+}$ -selective chemodosimeter in aqueous solution: luorescent OFF-N. Org Lett, 9: 907-910. https://doi.org/10.1021/ol070109c - Xiang, Y., Tong, A., 2006, A new rhodamine-based chemosensor exhibiting selective Fe(III)-amplified fluorescence. Org Lett, 8: 1549-1552. https://doi.org/10.1021/ol060001h
-
Xiang, Y., Tong. A., Jin, P., Ju, Y., 2006, New fluorescent rhodamine hydrazone chemosensor for Cu2
$Cu^{2+}$ th high selectivity and sensitivity. Org Lett, 8: 2863-2866. https://doi.org/10.1021/ol0610340 -
Yang, Y. K., Yook, K. J., Tae, J. S., 2005, A rhodaminebased fluorescent and colorimetric chemodosimeter for the rapid detection of
$Hg^{2+}$ ions in aqueous media. J Am Chem Soc, 127: 16760-16761. https://doi.org/10.1021/ja054855t - Zheng, H., Qian, Z. H., Xu, L., Yuan, F. F., Lan. L. D., Xu, J. G., 2006, Switching the recognition preference of rhodamine B spirolactam by replacing one atom: Design of rhodamine B thiohydrazide for recognition of Hg(II) in aqueous solution. Org Lett, 8: 859-861. https://doi.org/10.1021/ol0529086