• Title/Summary/Keyword: Color sensor

Search Result 517, Processing Time 0.03 seconds

The System of Converting Muscular Sense into both Color and Sound based on the Synesthetic Perception (공감각인지 기반 근감각신호에서 색·음으로의 변환 시스템)

  • Bae, Myung-Jin;Kim, Sung-Ill
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.462-469
    • /
    • 2014
  • As a basic study on both engineering applications and representation methods of synesthesia, this paper aims at building basic system which converts a muscular sense into both visual and auditory elements. As for the building method, data of the muscular sense can be acquired through roll and pitch signals which are calculated from both three-axis acceleration sensor and the two-axis gyro sensor. The roll and pitch signals are then converted into both visual and auditory information as outputs. The roll signals are converted into both intensity elements of the HSI color model and octaves as one of auditory elements. In addition, the pitch signals are converted into both hue elements of the HSI color model and scales as another one of auditory elements. Each of the extracted elements of the HSI color model is converted into each of the three elements of the RGB color model respectively, so that the real-time output color signals can be obtained. Octaves and scales are also converted and synthesized into MIDI signals, so that the real-time sound signals can be obtained as anther one of output signals. In experiments, the results revealed that normal color and sound output signals were successfully obtained from roll and pitch values that represent muscular senses or physical movements, depending on the conversion relationship based on the similarity between color and sound.

Supervised-learning-based algorithm for color image compression

  • Liu, Xue-Dong;Wang, Meng-Yue;Sa, Ji-Ming
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.258-271
    • /
    • 2020
  • A correlation exists between luminance samples and chrominance samples of a color image. It is beneficial to exploit such interchannel redundancy for color image compression. We propose an algorithm that predicts chrominance components Cb and Cr from the luminance component Y. The prediction model is trained by supervised learning with Laplacian-regularized least squares to minimize the total prediction error. Kernel principal component analysis mapping, which reduces computational complexity, is implemented on the same point set at both the encoder and decoder to ensure that predictions are identical at both the ends without signaling extra location information. In addition, chrominance subsampling and entropy coding for model parameters are adopted to further reduce the bit rate. Finally, luminance information and model parameters are stored for image reconstruction. Experimental results show the performance superiority of the proposed algorithm over its predecessor and JPEG, and even over JPEG-XR. The compensation version with the chrominance difference of the proposed algorithm performs close to and even better than JPEG2000 in some cases.

Contrast Enhancement Method using Color Components Analysis (컬러 성분 분석을 이용한 대비 개선 방법)

  • Park, Sang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.707-714
    • /
    • 2019
  • Recently, as the sensor network technologies and camera technologies develops, there are increasing needs by combining two technologies to effectively observe or monitor the areas that are difficult for people to access by using the visual sensor network. Since the applications using visual sensors take pictures of the outdoor areas, the images may not be well contrasted due to cloudy weather or low-light time periods such as a sunset. In this paper, we first model the color characteristics according to illumination using the characteristics of visual sensors that continuously capture the same area. Using this model, a new method for improving low contrast images in real time is proposed. In order to make the model, the regions of interest consisting of the same color are set up and the changes of color according to the brightness of images are measured. The gamma function is used to model color characteristics using the measured data. It is shown by experimental results that the proposed method improves the contrast of an image by adjusting the color components of the low contrast image simply and accurately.

Covered Microlens Structure for Quad Color Filter Array of CMOS Image Sensor

  • Jae-Hyeok Hwang;Yunkyung Kim
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.485-495
    • /
    • 2023
  • The pixel size in high-resolution complementary metal-oxide-semiconductor (CMOS) image sensors continues to shrink due to chip size limitations. However, the pixel pitch's miniaturization causes deterioration of optical performance. As one solution, a quad color filter (CF) array with pixel binning has been developed to enhance sensitivity. For high sensitivity, the microlens structure also needs to be optimized as the CF arrays change. In this paper, the covered microlens, which consist of four microlenses covered by one large microlens, are proposed for the quad CF array in the backside illumination pixel structure. To evaluate the optical performance, the suggested microlens structure was simulated from 0.5 ㎛ to 1.0 ㎛ pixels at the center and edge of the sensors. Moreover, all pixel structures were compared with and without in-pixel deep trench isolation (DTI), which works to distribute incident light uniformly into each photodiode. The suggested structure was evaluated with an optical simulation using the finite-difference time-domain method for numerical analysis of the optical characteristics. Compared to the conventional microlens, the suggested microlens show 29.1% and 33.9% maximum enhancement of sensitivity at the center and edge of the sensor, respectively. Therefore, the covered microlens demonstrated the highly sensitive image sensor with a quad CF array.

A Study on the Application Method of Mechanochromic Sensor for Crack Monitoring in Buildings (건축물 균열 모니터링을 위한 역학변색센서 활용 기법에 관한 연구)

  • Choe, Gyeong-Chol;Kim, Hong-Seop;Jeon, Jun-Seo;Lee, Mun-Hwan;Pyeon, Su-Jeong;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.1
    • /
    • pp.69-79
    • /
    • 2023
  • In this study, an experimental study was conducted on the development of crack monitoring technology in buildings using a mechanochromic sensor. After attaching a mechanochromic sensor to the cracks induced in the concrete specimen, the color variation image of the sensor according to the progress of the cracks was taken. In addition, a method of analyzing a sensor color variation image was proposed, and an equation for deriving a crack's width from the relationship between the analysis result and the crack width was also proposed. In addition, the possibility of using an mechanochromic sensor for monitoring cracks in buildings was confirmed through the verification of crack width monitoring technology.

Fabrication of High-Performance Colorimetric Fiber-Type Sensors for Hydrogen Sulfide Detection (황화수소 가스 감지를 위한 고성능 변색성 섬유형 센서의 제작 및 개발)

  • Jeong, Dong Hyuk;Maeng, Bohee;Lee, Junyeop;Cho, Sung Been;An, Hee Kyung;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.168-174
    • /
    • 2022
  • Hydrogen sulfide(H2S) gas is a high-risk gas that can cause suffocation or death in severe cases, depending on the concentration of exposure. Various studies to detect this gas are still in progress. In this study, we demonstrate a colorimetric sensor that can detect H2S gas using its direct color change. The proposed nanofiber sensor containing a dye material named Lead(II) acetate, which changes its color according to H2S gas reaction, is fabricated by electrospinning. The performance of this sensor is evaluated by measuring RGB changes, ΔE value, and gas selectivity. It has a ΔE value of 5.75 × 10-3 ΔE/s·ppm, showing improved sensitivity up to 1.4 times that of the existing H2S color change detection sensor, which is a result of the large surface area of the nanofibers. The selectivity for H2S gas is confirmed to be an excellent value of almost 70 %.

Noise PDF Analysis of Nonlinear Image Sensor Model;GOCI Case

  • Myung, Hwan-Chun;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.191-194
    • /
    • 2007
  • The paper clarifies all the noise sources of a CMOS image sensor, with which the GOCI (Geostationary Ocean Color Imager) is equipped, and analyzes their contribution to a nonlinear image sensor model. In particular, the noise PDF (Probability Density Function) is derived in terms of sensor-gain coefficients: a linear and a nonlinear gains. As a result, the relation between the noise characteristic and the sensor gains is studied.

  • PDF

A Survey of Real-time Road Detection Techniques Using Visual Color Sensor

  • Hong, Gwang-Soo;Kim, Byung-Gyu;Dogra, Debi Prosad;Roy, Partha Pratim
    • Journal of Multimedia Information System
    • /
    • v.5 no.1
    • /
    • pp.9-14
    • /
    • 2018
  • A road recognition system or Lane departure warning system is an early stage technology that has been commercialized as early as 10 years but can be optional and used as an expensive premium vehicle, with a very small number of users. Since the system installed on a vehicle should not be error prone and operate reliably, the introduction of robust feature extraction and tracking techniques requires the development of algorithms that can provide reliable information. In this paper, we investigate and analyze various real-time road detection algorithms based on color information. Through these analyses, we would like to suggest the algorithms that are actually applicable.

Automatic Detection of Forgery in Cell phone Images using Analysis of CFA Pattern Characteristics in Imaging Sensor (휴대폰의 CFA 패턴특성을 이용한 사진 위변조 탐지)

  • Shim, Jae-Youen;Kim, Seong-Whan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.1118-1121
    • /
    • 2010
  • With the advent of cell phone digital cameras, and sophisticated photo editing software, digital images can be easily manipulated and altered. Although good forgeries may leave no visual clues of having been tampered with, they may, nevertheless, alter the underlying statistics of an image. Most digital camera equipped in cell phones employ a single image sensor in conjunction with a color filter array (CFA), and then interpolates the missing color samples to obtain a three channel color image. This interpolation introduces specific correlations which are likely to be destroyed when tampering with an image. We quantify the specific correlations introduced by CFA interpolation, and describe how these correlations, or lack thereof, can be automatically detected in any portion of an image. We show the efficacy of this approach in revealing traces of digital tampering in lossless and lossy compressed color images interpolated with several different CFA algorithms in test cell phones.

A Design of an LED Sensor Luminaire for Visual Function Improvement (시각적 기능개선을 위한 LED 센서 등기구 설계)

  • Seo, Jung-Nam;Yu, Yong-Su;Yeo, In-Seon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.134-137
    • /
    • 2010
  • An LED sensor luminaire for visual function improvement necessitates the control algorithm for light level adjustment and the appropriate lens design. The control algorithm adapts to surround lighting condition, and thus has the advantages of energy saving and glare reduction. The multi-cell lens design improves color temperature uniformity and spatial light distribution of the luminaire. Experimental and simulated results show that this approach contributes noticeably to energy saving and color temperature uniformity of the LED sensor luminaire.