
258 |     ETRI Journal. 2020;42(2):258–271.wileyonlinelibrary.com/journal/etrij

1 |  INTRODUCTION

Advances in information technology have led to an increased 
use of multimedia such as images and videos to share in-
formation over the Internet. Furthermore, users are increas-
ingly demanding better quality multimedia as well as faster 
transmission rates. To meet these demands, researchers are 
continuously pursuing improvements in image compression 
techniques. It is well‐known that redundancy exists in the 
adjacent pixels of an image. By exploiting this redundancy, 
an image can be compressed to reduce the necessary storage 
space and transmission bandwidth. The existing compression 
techniques such as JPEG [1], JPEG2000 [2], and JPEG‐XR 
[3] transform images into the frequency domain, and then 

store the coefficients of the frequency domain, which are en-
coded elaborately. At the decoder, the coefficients are trans-
formed inversely into the spatial domain to reconstruct the 
original image either precisely or approximately.

Traditionally, a color image coder processes three color 
channels independently. In fact, an interchannel correlation 
exists between the three color components of an image. This 
correlation has been exploited to improve the coding effi-
ciency of the state‐of‐the‐art video coding standard, that is, 
High Efficiency Video Coding (HEVC) [4‒6]. Models that 
exploited interchannel correlation using the reconstructed 
luma to linearly predict the chroma with parameters derived 
from neighboring reconstructed luma and chroma pixels for 
HEVC were proposed in [5] and [6].

Received: 9 October 2018 | Revised: 15 June 2019 | Accepted: 29 July 2019

DOI: 10.4218/etrij.2018-0557  

O R I G I N A L  A R T I C L E

Supervised‐learning‐based algorithm for color image 
compression

Xue‐Dong Liu  |   Meng‐Yue Wang |   Ji‐Ming Sa

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition + Change 
Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).
1225-6463/$ © 2019 ETRI

Key Laboratory of Broadband 
Wireless Communications and Sensor 
Networks, School of Information 
Engineering, Wuhan University of 
Technology, Wuhan, Hubei, China

Correspondence
Xue‐Dong Liu, Key Lab. of Broadband 
Wireless Communications and Sensor 
Networks, School of Information 
Engineering, Wuhan University of 
Technology, Wuhan, Hubei, China.
Email: zxndp@126.com

A correlation exists between luminance samples and chrominance samples of a color 
image. It is beneficial to exploit such interchannel redundancy for color image com-
pression. We propose an algorithm that predicts chrominance components Cb and 
Cr from the luminance component Y. The prediction model is trained by supervised 
learning with Laplacian‐regularized least squares to minimize the total prediction 
error. Kernel principal component analysis mapping, which reduces computational 
complexity, is implemented on the same point set at both the encoder and decoder to 
ensure that predictions are identical at both the ends without signaling extra location 
information. In addition, chrominance subsampling and entropy coding for model 
parameters are adopted to further reduce the bit rate. Finally, luminance informa-
tion and model parameters are stored for image reconstruction. Experimental results 
show the performance superiority of the proposed algorithm over its predecessor 
and JPEG, and even over JPEG‐XR. The compensation version with the chromi-
nance difference of the proposed algorithm performs close to and even better than 
JPEG2000 in some cases.

K E Y W O R D S
color image compression, interchannel redundancy, LapRLS, prediction model, supervised learning, 
total prediction error

www.wileyonlinelibrary.com/journal/etrij
mailto:﻿￼
https://orcid.org/0000-0002-6598-953X
http://www.kogl.or.kr/info/licenseTypeEn.do
mailto:zxndp@126.com


   | 259LIU et aL.

In colorization‐based coding, the encoder selects a few 
representative pixels (RPs) whose chrominance values and 
positions are stored or transmitted together with the lumi-
nance component; in the decoding stage, the chrominance 
values for all the pixels are colorized by the RPs and the 
decompressed luminance image. The main issue in color-
ization‐based coding is how to extract the RP so that the 
rate‐distortion (RD) performance is good. Lee and others [7] 
formulated the colorization‐based coding problem into an 
L1 minimization problem. For a fixed reconstruction error 
value and a given colorization matrix, the selected set of RPs 
is guaranteed to be the smallest set. To improve the image 
coding performance, Uruma and others [8] proposed the RP 
compression algorithm using the graph Fourier transform, 
and accordingly introduced the colorization technique using 
a representative graph spectrum based on the graph Fourier 
transform.

Recently, remarkable progress has been made in the ap-
plication of machine learning technologies to image com-
pression. Reference [9] proposed the use of color information 
from a few RPs to learn a model that predicts the colors of 
the rest of the pixels and recovers the original image by stor-
ing the RPs and grayscale edition of the image. Based on the 
statistical theories of optimal experimental design [10], He 
and others [11] proposed an active learning algorithm, called 
graph‐regularized experimental design (GRED), and showed 
that it was more effective than the method used in [9]. Noting 
that all the real colors are known at the encoding stage, [12] 
proposed an active learning algorithm that selects a subset of 
pixels as seeds, that is RPs, to achieve total prediction error 
minimization (TEM) of chrominance. The seeds were stored 
together with the luminance component for the decoder, 
which were used to train a prediction model with a semi‐su-
pervised‐learning algorithm. The model was then applied to 
predict the colors of all the pixels. It has been reported that 
TEM outperforms the methods proposed in [9] and [11]. The 
three aforementioned algorithms share two key procedures: 
selecting representative color seed pixels by means of stan-
dard active learning and predicting color values with a model 
trained by a semi‐supervised‐learning algorithm.

Seed point selection procedures by active learning are 
time‐consuming. In fact, it is not necessary to use complex 
active learning to ensure total error minimization. Because 
all the color values are available at the encoder, we can use 
supervised learning to construct a Laplacian‐regularized 
least square (LapRLS) objective function to minimize the 
total prediction error naturally over all the training points. 
Consequently, time‐consuming active learning is omitted. In 
view of the massive number of training points and size of ma-
trices in the expression of the optimal solution of the predic-
tion model as well as the resultant computational burden, we 
use kernel principal component analysis mapping (KPCAM) 
[13]. KPCAM generates a space with reduced dimension m 

instead of the original number of training points n. Aside 
from KPCAM, effective strategies such as chrominance sub-
sampling and entropy coding are applied to further reduce the 
computational cost and bit rate. In experiments, we explored 
the laws governing the effects of various factors on the RD 
performance of the proposed algorithm.

The rest of this paper is organized as follows. A brief re-
view of the previous similar works from which the proposed 
algorithm evolved is given in Section 2. Our supervised‐learn-
ing‐based algorithm (SLBA) for color image compression is 
described in Section 3. Experimental results are discussed in 
Section 4, and conclusions are drawn in Section 5.

2 |  PREVIOUS SIMILAR WORKS

Exploiting the correlation between different channels of a 
color image to further reduce data size is a recent concept. In 
previous similar works [9,11,12], semi‐supervised learning 
was utilized to minimize the loss of labeled examples for 
training and then generalized to all examples for prediction. 
Graph‐based semi‐supervised‐learning methods construct a 
problem graph G to denote the neighborhood relation among 
examples (both labeled and unlabeled). A function of the G 
acts as a regularizer to implement the manifold assumption 
or local consistency assumption [13]. Then, another regular-
izer is added to ensure the numerical stability of the solu-
tion. Integration of the two regularizers with prediction error 
forms the LapRLS objective function, whose optimal solu-
tion leads to a prediction or regression model. The optimal 
solution is of a closed form that deals with the inverse of an 
n × n matrix, where n is the number of total examples, in-
cluding both labeled and unlabeled ones. To select the most 
representative seed points, the previous methods used vari-
ous active learning schemes. Reference [9] used a heuristic 
strategy to select the RPs from regions where a high predic-
tion error occurs. Reference [11] selected seeds such that the 
determinant of the covariance matrix of the regression coef-
ficients is minimized to ensure that the optimal solution is 
as stable as possible. Making full use of the fact that all true 
colors are available at the encoder, Reference [12] selected 
the most informative pixels to ensure that the total prediction 
error is minimized and the algorithm outperforms the two 
previous ones.

In the aforementioned machine learning‐based color 
image compression methods, luminance component Y was 
stored whereas the two chrominance components, Cb and Cr, 
were predicted from a model f trained by semi‐supervised 
learning. f predicts the color values of Cb and Cr correspond-
ing to the input feature vector (R, C, I), where (R, C) is the 
location of a pixel, and I is the luminance value. The pre-
dicted chrominance values are called labels, denoted by y. In 
semi‐supervised learning, a set of labeled pairs {(x1, y1), …, 



260 |   LIU et aL.

(xl, yl)} is needed to train the prediction model while another 
set of unlabeled pixels {xl+1, …, xn} helps improve the learn-
ing performance of model f, where xi is the ith feature point 
and yi is the corresponding label.

References [9,11,12] present three algorithms of the same 
type. The proposed algorithm SLBA evolves from TEM [12], 
which is considered the best one of its kind so far. As a vari-
ant of TEM, SLBA outperforms it. For a better understanding 
of SLBA and the reasons why it is superior to TEM, we intro-
duce TEM briefly as follows.

In TEM, the regression model is trained by all the training 
points although the objective function attempts to minimize 
the prediction error only on the smaller number of labeled 
points. This is shown in

where X is the set of labeled points and U is the set of all 
training points; YX is a vector containing color labels cor-
responding to set X; FX and FU are the vectors containing 
color values predicted by f corresponding to X and U, re-
spectively; L is the so‐called graph Laplacian matrix; λ1 and 
λ2 are two constants; ||∙|| is the norm operator; T denotes the 
transpose operation. The first term is the prediction error 
over the labeled points. The two latter terms are the regu-
larizers that help improve the regression model. The points 
in set X are called color seeds. This is the semi‐supervised‐
learning paradigm. Seed selection plays a very important 
role because different seeds may result in different predic-
tion performances. Reference [12] adopted active learning 
to select points as seeds so that f can minimize the total pre-
diction error.

There are two schemes to select the optimal seed pixel 
points: one starts with an empty set X and then adds the 
selected color seeds iteratively; the other starts with all 
the pixels, that is, X = U and then removes pixels itera-
tively. The latter is adopted in TEM because it performs 
better. The selection process also needs to compute the 
total prediction error each time a point is removed. This 
is implemented exhaustively for every candidate point. 
Those points are removed if the resultant X can produce 
the total prediction error minimum. The iteration contin-
ues until the predefined number of points in set X, that is 
l, is reached. The selection of seed points is a time‐con-
suming process.

In summary, TEM uses an active learning algorithm to 
select a subset of pixels as seeds. The stored luminance and 
color seeds are used to train a regression model by a semi‐su-
pervised‐learning algorithm. The model is then applied to all 
the pixels to predict their chrominance values. The selection 
of seeds is time‐consuming, and the storage requirement of 
the seeds is higher. In view of these disadvantages of TEM, 
we developed SLBA.

3 |  SUPERVISED‐LEARNING‐
BASED ALGORITHM FOR COLOR 
IMAGE COMPRESSION

3.1 | Supervised‐learning by LapRLS
Our work focuses on color image compression by exploit-
ing interchannel correlation. The proposed SLBA evolves 
from the semi‐supervised‐learning approach, LapRLS, 
mentioned earlier [12]. The previous objective function of 
LapRLS shared a term denoting the prediction error over 
only l labeled pixels. In addition, there are other regular-
izers constructed by all (both labeled and unlabeled) n 
training pixel points in the objective function. The result-
ant optimal solution that minimizes the objective function 
involves the inverse of a large‐sized matrix. In TEM, there 
are n training points, but the learnt f minimizes the predic-
tion error over only l (l « n) labeled points. To achieve 
total error minimization, TEM launches an iterative active 
learning procedure, which accounts for the majority of 
time consumed. In fact, we can achieve total error mini-
mization by modifying the objective function of LapRLS, 
thereby avoiding the time‐consuming active learning pro-
cess. Compared with previous methods based on semi‐su-
pervised and active learning, it is necessary to highlight the 
improvements and innovations proposed to the method in 
this paper.

1. SLBA can minimize the total prediction error without 
the time‐consuming active learning procedure.

2. KPCAM is adopted to reduce computational cost. The 
required m representative points are sampled from the 
same fixed grid of the reconstructed luminance com-
ponent, which makes it possible for both the encoder 
and decoder to use the same parameters to predict chro-
minance values of pixels without signaling location 
information.

3. Unlike previous methods [9,11,12], which need a set of 
color seeds, including location, luminance, and chromi-
nance values, SLBA only uses 2m parameters to convey 
Cb and Cr information. SLBA further refines our previ-
ous method [14]. The fractional parameters are rounded 
off and then entropy coded, which improves the RD per-
formance of SLBA because the needed bit overhead is 
lower.

4. Finally, utilizing the insensitivity of the human eye to 
chrominance, SLBA improves our previous method [14]. 
Chrominance subsampling is adopted, which results in a 
lower bit rate and remarkable RD performance.

In TEM, the term in the LapRLS objective function denot-
ing prediction error over l labeled points is 

∑l

i=1

�
yi− f (xi)

�2, 
where xi is the ith seed point in X and yi is the corresponding 

arg min{J(f )=‖‖YX−FX
‖‖

2
+�1 ∥ f ∥2 +�2F

T
U

LFU},



   | 261LIU et aL.

label in YX. Because all pixel colors are available at the en-
coder, we modified the term to 

∑n

i=1

�
yi− f

�
ui

��2, where ui 
is the ith training point and n is the total number of training 
points. This is the supervised‐learning paradigm that at-
tempts to minimize the prediction error over all the n train-
ing pixels:

where YU = [y1, …, yn]
T and FU = [ f (u1), …, f(un)]

T.
To enhance the nonlinear prediction ability, we will learn 

a function f in the reproducing kernel Hilbert space (RKHS) 
[15]. According to the representer theorem, there exists a 
set of coefficients αi so that f can be expressed as a linear 
combination f (u)=

∑n

i=1
�ik

�
u, ui

�
, where k (⋅,⋅) is a ker-

nel function that satisfies the reproducing kernel property 
<f, k(u,·)> = f(u) in the RKHS, and <·,·> denotes the inner 
product operation. To ensure the numerical stability of the 
solution of the objective function, we attempt to minimize 
∥ f ∥2 , which forms a regularizer in the objective function, 
where ||·|| denotes the norm operation. Using the reproducing 
kernel property, we have

where α = [α1 ··· αn]
T, with the superscript T denoting transpose 

operation and K is the symmetrical kernel Gram matrix with 
elements Kij = k(ui, uj).

In addition, we make the local consistency assumption or 
manifold assumption [13] that if two pixels are close and have 
similar luminance values, then their chrominances should be 
similar. This means that if ||ui − uj|| is small, then |f(ui) − f(uj)| 
should also be small. This assumption forms another regular-
izer that helps improve the learning performance. The reg-
ularizer can be formulated by spectrum graph theory [16]. 
According to the theory, the similarity information between 
points is represented by an adjacency matrix W, in which 
elements Wij  =  1 if ui and uj are close enough; otherwise, 
Wij = 0. We adopted the k‐nearest neighbors (KNN) graph to 
construct matrix W, that is, Wij = 1 if ui is within the k‐near-
est neighbors of uj, or uj is within the k‐nearest neighbors of 
ui. Then, we obtain a diagonal degree matrix D with elements 
Dii =

∑n

j=1
Wij. Matrix L = D−W is referred to as the graph 

Laplacian matrix. According to the manifold assumption,

should be small and can be formulated concisely as G 
(f)  =  FU

TLFU, where FU is defined as before. Integrating 

(1) with the two aforementioned regularizers, we obtain the 
LapRLS objective function:

where λ1 and λ2 are constants similar to the Lagrange multiplier. 
Considering the representer theorem, we have

Substituting (2) and (4) into (3), we obtain

which becomes a minimization problem with respect to the 
coefficient vector α. Let �J∕��=0. We obtain the optimal 
solution

where I is an n × n identity matrix.

3.2 | Improve computational efficiency
It can be seen from (6) that an n × n matrix must be inverted 
to calculate optimal α*. The calculation complexity is O(n3). 
When the image is large, the calculation imposes a huge compu-
tational burden. Moreover, the prediction using (4) needs all the 
n data points even if only one output f(u) is to be computed. In 
this section, we introduce a nonlinear mapping method to trans-
form the data points into an m‐dimensional space so that linear 
LapRLS can be conducted. As a result, the complexity depends 
on the space dimension m instead of the number of data points n. 
KPCAM was adopted to achieve the nonlinear map φz: X → ℝm, 
where x↦�Z (x)=K

−1∕2

ZZ

[
k
(
x, z1

)
,… , k

(
x, zm

)]T
, in which 

Z = {z1, …, zm} is a selected subset of the training point set U 
and KZZ is the kernel Gram matrix whose (i, j)th element is a 
certain nonlinear kernel function value k(zi, zj). We use notation 
φi to denote φz(ui) for simplicity. The linear LapRLS can be 
implemented using linear kernel function k(φi, φj) = φi

Tφj in 
the RKHS so that the regression model is.

where w=
∑n

i=1
�i�i. It is clear that f becomes a linear 

function with respect to coefficient vector w∈ℝ
m. Let 

�=
[
�1,… ,�n

]
 and F�= [f

(
�1

)
,… ,f

(
�n

)
]T =�T

w. In 
addition, regularizer ∥ f ∥2 exhibits a new form:

(1)arg min
f

∑n

i=1

(
yi− f

(
ui

))2
= arg min

f

‖‖YU−FU
‖‖

2
,

(2)‖f‖2 =

n�

i=1

n�

j=1

�i�jk
�
ui, uj

�
=�T

K�,

G (f )=0.5∗

n∑

i,j

Wij

[
f
(
ui

)
− f

(
uj

)]2

(3)arg min
f

[
J=‖‖YU−FU

‖‖
2
+�1 ∥ f ∥2 +�2F

T
U

LFU

]
,

(4)FU =K�.

(5)arg min
�

[
J=‖‖YU−K�‖‖

2
+�1�

T
K�+�2�

T
KLK�

]
,

(6)�∗ =
(
K+�1I+�2LK

)−1
YU,

(7)f (�)=
∑n

i=1
�ik

(
�,�i

)
=�T

(∑n

i=1
�i�i

)
=�T

w,

(8)‖f‖2 =

n�

i=1

n�

j=1

�i�jk
�
�i,�j

�
=w

T
w.



262 |   LIU et aL.

Substituting FU in (3) with FΦ and (8) into (3), we get the 
new form of the objective function

Let �J (w)∕�w=0. The optimal solution is determined as

where Im is an m × m identity matrix.
Compared with (6), (9) needs to calculate the inverse of 

a matrix of m × m instead of n × n. The complexity of com-
puting w* is O(m3). When m is significantly smaller than n, 
the computational efficiency can be improved significantly.

3.3 | Complete codec framework
The proposed complete codec algorithm is summarized as 
follows. After an image is input to the encoder, color space 
conversion is first performed to get luminance component Y 
and chrominance components Cb and Cr. Because the human 
eye is insensitive to chrominance, we implement chromi-
nance subsampling; the subsampling pattern is 4:2:0, as 
shown in Figure 1. Y is coded by the standard technique. The 
code stream of Y is transmitted through the channel or stored 
in the memory. The code stream is decompressed at both the 
encoder and decoder into a reconstructed luminance Ŷ.

In theory, n in (1) is the number of pixels in an image. 
In the supervised‐learning paradigm, n is also the number 
of training points. It is computationally very demanding 
that all the pixels act as training points because LapRLS 
needs to construct a large adjacency matrix W. Therefore, 
it is necessary to reduce the computational cost and mem-
ory requirements. Selecting only the representative points for 
training is a natural solution. Reference [9] segmented the 
image using a normalized cut [17] into regions. From each 
region, a pixel is randomly selected for subsequent learning. 
However, the segmentation itself imposes a high computa-
tional cost. To achieve a trade‐off between the computational 
cost and representativeness of selected training points, we 

uniformly subsample n pixel points in Ŷ as training points for 
supervised learning, which is similar to but simpler than the 
schemes in [9,11,12]. The training points are sampled from 
the same grids of Ŷ at the coder and decoder, which ensures 
that the predictions generated at the two ends are equal. The 
experimental results show that this sampling scheme is effec-
tive despite its simplicity.

To implement KPCAM, a set that includes m points, that 
is, Z = {z1, …, zm} ⸦ U, must be determined. In general, 
points representative of U are chosen as  zi's. In [12], k‐means 
clustering was used to ensure the representativeness of  zi's. 
Here, we sought a more feasible and effective scheme. The 
experimental results show that simple uniform sampling 
from the training points can determine the zi's by which sat-
isfactory predictions can be made. Hence, we resampled the 
n training points to obtain zi (i = 1, …, m) for KPCAM, as 
shown in Figure 2. The two coefficient vectors w*Cb and w*Cr 
determined by (9) are used to predict Cb and Cr, respectively. 
They are entropy coded and denoted by w*s hereinafter for 
simplicity.

At the decoder, Ŷ is sampled in the same way as that at 
the encoder to obtain the same training points and represen-
tative points {z1, …, zm} for KPCAM, without the need for 
location information. By means of KPCAM, the mapping φi 
of every ui can be computed, and then the two chrominance 
components are predicted by (7). In the end, a color image is 
recovered by color space conversion into the RGB space. The 
codec framework of SLBA is shown in Figure 3.

Similar to TEM, the proposed SLBA also has an improved 
version, called SLBA‐Compensation (SLBA‐C), a counter-
part of TEM‐Compensation (TEM‐C) in [12], which uses 
prediction difference images to compensate the regression 

arg min
w

[
J (w)=

‖‖‖YU−�T
w
‖‖‖

2

+�1w
T
w+�2w

T�L�T
w

]
.

(9)w
∗ = (��T+�1Im+�2�L�T)−1�YU,

F I G U R E  1  Chrominance subsampling of 4:2:0

Chrominance sample

No chrominance sample

2

0

F I G U R E  2  Training points and representative points zi for 
KPCAM

: Unsampled points
: Training points
: zi for KPCAM



   | 263LIU et aL.

results. In SLBA‐C, Cb and Cr are predicted by (7) at the 
encoder. Chrominance difference images are generated by 
subtracting the predicted Cb and Cr from the original ones, 
and then coded by JPEG2000, as in TEM‐C. At the decoder, 
the decoded difference images are added to the predicted Cb 
and Cr to refine the regression results. The codec framework 
of SLBA‐C is shown in Figure 4.

In summary, SLBA is superior to TEM in three as-
pects. The first and the most important is that SLBA needs 
no time‐consuming seed pixel point selection. Total error 
minimization is achieved by supervised learning instead of 
selecting optimal seed points. Second, chrominance informa-
tion is conveyed by w*s that are entropy coded and occupy 

significantly less bits than are allocated to seeds in TEM. 
Third, utilizing the insensitivity of the human eye to chromi-
nance, chrominance subsampling is adopted to further reduce 
computational cost and speed up implementation.

4 |  EXPERIMENTS

In this section, we first present the implementation details. 
Then, we present the experimental results for various pa-
rameter configurations and the comparisons between SLBA/
SLBA‐C and other algorithms. Test images used in our ex-
periments are shown in Figure 5, all of which are 512 × 512 

F I G U R E  3  Codec framework of SLBA

Predicted 
chrominance 
component

Color
space

conversion

Luminance component Y

Chrominance
component

Cb/Cr

Standard 
coder

Code stream

Standard  
decoder

Reconstructed
luminance 
component

w*

Standard
decoder

Reconstructed luminance component

Entropy
coder

Entropy
decoder

Color
space

conversion

Reconstructed
color image 

Training points set U

Representative points 
resampling

Z

Linear LapRLS

KPCAM

Z

× ΦF

Ŷ

Ŷ

Gram 
matrix 

calculation

Kernel 
function

ZZK−1/2 ( ),k u z

Φ

Feature 
points 
set X

w*

4:2:0
subsampling

Rounding

Representative points 
resampling

Gram 
matrix 

calculation

Kernel function
calculation

KPCAM

( ),k x z

Φ

4:2:0 
subsampling
Uniformally 

sampling

Training points set
U

Initial
image

4:2:0 
subsampling
Uniformally 

sampling

Coder Decoder

1/2
ZZ
−K

YU

calculation

C
h

an
n

el
 o

r 
st

or
ag

e 
m

ed
iu

m

F I G U R E  4  Codec framework of SLBA‐C

SLBA coder

Prediction model

Predicted 
chrominance

Original
chrominance

Difference of 
chrominance

Standard coder

Prediction model

of chrominance
Standard decoder

Predicted
chrominance

Reconstructed difference 

Compensated
chrominance

Ŷ

Color
space

conversion

Reconstructed
color image 

+ _

+

+

Original
image

ˆY and  w*s

C
ha

nn
el

 o
r s

to
ra

ge
 m

ed
iu

m



264 |   LIU et aL.

in size. The first three images in the top row of Figure 5 are 
called Lena, baboon, and peppers, respectively.

We measured the prediction accuracy with structural sim-
ilarity (SSIM) [18] and peak signal‐to‐noise ratio (PSNR). 
The PSNR is formulated as PSNR = 10lg(2552/MSE), where 
MSE= ||I− I�||2

F
∕ (MN) is the mean squared error between 

the original image I and reconstructed image I'; M and N are 
the row and column sizes of the images, respectively; and ||·||F 
is the Frobenius norm [19].

4.1 | Implementation details
Here, n = 8192 points were sampled uniformly as training 
points from all the pixel points of the test images used in 
our experiments, as shown in Figure 2. We also subsam-
pled luminance component Y, which is identical to the 
chrominance subsampling, to obtain training points for the 
prediction model. To compare the performance with TEM/
TEM‐C, which is reportedly the best among the homogene-
ous learning‐based color image compression methods, we set 
the primary operation parameters to be the same as those in 
TEM. Specifically, λ1 and λ2 in (9) are 0.001 and 0.002, re-
spectively; besides the linear kernel function in (7), we also 
adopted the Gaussian kernel function as the normal nonlin-
ear kernel function, that is, k(ui, uj)= exp (− ||ui−uj||2∕�2)

; parameter σ in the expression is also formulated as 
�= (0.34 ⋅

∑n

i=1
��ui−u��)∕n, where u is the mean of ui, with 

i = 1, …, n.
We used the KNN graph to construct the adjacency matrix 

W mentioned in Section 3.1. Generally, the training pixel point 
(R, C, I) is the closest to the eight pixel points around it. A KNN 
graph with K = 8 (8‐neighbor) should be superior to the case of 
K = 4 (4‐neighbor) used in TEM. Tests were performed to ver-
ify this conjecture, which were conducted under the conditions 

where n = 8192, m = 2048, with the luminance component Y 
coded losslessly by JPEG2000, and the chrominance compo-
nents Cb and Cr predicted with w*s rounded off. The average 
PSNRs of the reconstructed Cb and Cr by SLBA with the KNN 
graph of different K values are compared in Table 1. We can see 
that K = 8 results in a slightly improved performance compared 
with that of K = 4. Therefore, we set K = 8 in all our experiments.

The w*s determined by (9) are fractional. To reduce 
the bit overhead, all the entries of w*s are rounded off 
and then Huffman coded to further exploit the statistical 
redundancy.

4.2 | Impact of m on performance of SLBA/
SLBA‐C
The number of representative points in set Z used by KPCAM, 
denoted by m, impacts both the prediction accuracy and time 
consumed by SLBA/SLBA‐C. PSNRs were calculated for the 
predicted Cr and Cb, and then the average PSNR was presented. 
To explore the impact of different m values, we compared the 
PSNRs of the reconstructed chrominance and the SSIMs of the 
reconstructed images Lena, baboon, and peppers. The metrics 
were evaluated under the condition that luminance and chromi-
nance differences are coded losslessly by JPEG2000.

The average PSNR and SSIM values are shown in Figure 6A 
and 6B, respectively. From the two figures we can see that the 
chrominance prediction quality measured by PSNR and SSIM in-
creases with m in SLBA. This is because the regression model in 
(7) is of more generality when w*s are obtained by the larger set 
Z. However, when m exceeds 1024, the PSNR and SSIM curves 
become flat. This is because an excessive m leads to information 
redundancy. Figure 6 also shows that although the chrominance 
predicted by SLBA is inaccurate when the value of m is small, 
the chrominance quality by SLBA‐C remains nearly constant. 
This is because prediction errors can be compensated even when 
they are large owing to the small value of m. The quality of the 
reconstructed chrominance by SLBA‐C depends mainly on the 
compression ratio specified for the luminance component and 
the chrominance prediction error in the JPEG2000 coder.

We also tested the time consumed by SLBA‐C at vari-
ous values of m, for example, 128, 256, 512, 1024, and 2048. 
Figure 7 depicts the time consumed by SLBA‐C vs m. We can 
see that the time consumed increases almost linearly with m. 
For the trade‐off between regression performance and run-
ning speed, we set m = 1024 in later experiments.

F I G U R E  5  Test images used in our experiments. Each image is 
512 × 512 in size

T A B L E  1  Average PSNRs (dB) of predicted chrominance in 
SLBA with K = 4 and K = 8 in KNN graph for three images

Image name K = 4 K = 8

Lena 39.9103 39.9122

Baboon 29.5927 29.5976

Peppers 33.0487 33.0536



   | 265LIU et aL.

4.3 | Impact of compression ratio of 
Y component
In SLBA/SLBA‐C, chrominance components Cb and Cr 
are predicted by the regression model and then compen-
sated in SLBA‐C, while the luminance component Y is 
still compressed by the standard method. The compression 
ratio of Y (CRY) impacts the predicted Cb and Cr. Figure 
8 depicts the PSNR curves of the reconstructed chromi-
nance vs m when CRY is 1, 25, and 50. We can see that 
m is dominant, though CRY also impacts the reconstructed 
chrominance quality. Generally, the smaller the CRY is, the 
larger the PSNR is, which is particularly obvious for ba-
boon. This is so because Y with a better quality can keep 
the manifold assumption; thus, the regression model yields 
more accurate predictions.

4.4 | Impact of compression 
ratio of chrominance difference image on 
colorization quality
Chrominance components Cb and Cr have equal signifi-
cance; therefore, the two chrominance difference images are 
compressed with the same ratio CRdiff. Experiments were 
also designed to explore the impact of CRdiff on colorization 

quality in SLBA‐C, where m was fixed to be 1024. The aver-
age PSNR of the reconstructed Cb and Cr was evaluated at 
various compression ratios of Y (CRY) and chrominance dif-
ference (CRdiff) on images Lena, baboon, and peppers.

The PSNR vs CRY and CRdiff curves are shown in Figure 
9. It is clear that the reconstructed chrominance is heavily 
dependent on CRdiff, while being slightly dependent on CRY. 
This result is straightforward because the regression model 
depends mainly on the value of m rather than the fidelity of 
Y, as shown in Figure 8; however, the chrominance compen-
sation depends mainly on the accuracy of the difference im-
ages. Therefore, the smaller the CRdiff is, the more accurate 
the difference images are, and the better the reconstructed 
chrominance is. These results imply that a higher bit over-
head should be allocated to chrominance difference than to 
luminance for the purpose of colorization.

4.5 | Comparison of colorization quality
Because TEM/TEM‐C is currently considered the best learn-
ing‐based compression method of its kind, we compared 
SLBA/SLBA‐C with only TEM/TEM‐C in terms of the pre-
diction quality for chrominance measured by PSNR. The bits 
consumed by chrominance were used for coding coefficient 
vectors w*s, each of which includes m entries. DCr and DCb 
represent the overhead of chrominance difference images 
coded by JPEG2000 in SLBA‐C. Apparently, DCr and DCb are 
0 for SLBA. Consequently, the bits consumed by chrominance 
are computed as 2m × bpw + DCb + DCr for SLBA‐C, where 
bpw is the bits per entry of w*s. In TEM‐C, the bits consumed 
by chrominance were 48l + DCb + DCr, where l is the number 
of color seeds. Note that bpw in SLBA/SLBA‐C ranges from 
6 to 9, which is significantly below 48. Hence, SLBA, particu-
larly SLBA‐C, has significantly better RD performance than 
that of TEM/TEM‐C. For our experiments, m was fixed to be 
1024; for SLBA, the bit rate varied with CRY. For SLBA‐C, 
CRY was fixed to be 100, and the bit rate varied with CRdiff.

Figure 10 depicts the plot of average chrominance PSNR 
vs the bit rate, which gives the trends in the colorization 

F I G U R E  6  (A) Average chrominance PSNR and (B) average SSIM at various values of m

0 500 1000 1500 2000
m

20

30

40
PS

N
R 

(d
B)

Chrominance PSNR by SLBA 

Chrominance PSNR by SLBA-C

0 500 1000 1500 2000
m

0.7

0.8

0.9

SS
IM

Chrominance SSIM by SLBA 

Chrominance SSIM by SLBA-C

(A) (B) 

F I G U R E  7  Time consumed by SLBA‐C codec vs m

0 500 1000 1500 2000
m

0

200

400

600

Ti
m

e 
(s

)



266 |   LIU et aL.

F I G U R E  8  PSNR of reconstructed 
chrominance vs m and CRY for images  
(A) Lena, (B) baboon, and (C) peppers

1000 2000
m

20

25

30

35

40
PS

N
R 

(d
B)

CRY = 1

CRY = 25

CRY = 50

1000 2000
m

20

22

24

26

28

30

PS
N

R 
(d

B)

0 1000 2000
m

20

22

CRY = 1

CRY = 25

CRY = 50

CRY = 1

CRY = 25

CRY = 50

(A) (B) (C)

F I G U R E  9  Colorization quality (PSNR) by SLBA‐C vs CRY and CRdiff on (A) Lena, (B) baboon, and (C) peppers

20 40 60 80 100
CRY

36

38

40

42

44

46

PS
N

R 
(d

B)

Lena

CRdiff = 5 

CRdiff = 20

CRdiff = 60 

CRdiff = 100

20 40 60 80 100
26

28

30

32

PS
N

R 
(d

B)

Baboon

20 40 60 80 100

30

32

34

36

38

40

PS
N

R 
(d

B)

Peppers

(A) (B) (C)

CRYCRY

CRdiff = 5 

CRdiff = 20

CRdiff = 60

CRdiff = 100

CRdiff = 5

CRdiff = 20

CRdiff = 60 

CRdiff = 100

F I G U R E  1 0  Colorization quality comparison of different methods on (A) Lena, (B) baboon, and (C) peppers

0.15 0.250.20 
Bit per pixel (b/p)

32

34

36

38

40

42

44

PS
N

R 
(d

B)

Lena

TEM

TEM-C

SLBA

SLBA-C

0.1 0.30.2
 Bit per pixel (b/p)

24

26

28

30

32

34

PS
N

R 
(d

B)

Baboon

TEM

TEM-C

SLBA 

SLBA-C

0.15 0.250.20
Bit per pixel (b/p)

30

32

34

36

38

40

PS
N

R 
(d

B)

Peppers

TEM

TEM-C

SLBA

SLBA-C

(A) (B) (C)



   | 267LIU et aL.

quality of different methods. It can be seen that SLBA out-
performs TEM, and SLBA‐C is significantly better than the 
other methods. This is attributed to significantly less bit con-
sumption of w*s achieved by entropy coding and chromi-
nance subsampling.

4.6 | Comparison with image 
compression standards
In a typical color image compression framework, RGB im-
ages are first converted into YCbCr images for coding. 
JPEG, JPEG2000, and JPEG‐XR process each channel of 
the YCbCr image independently. However, SLBA/SLBA‐C 

encodes Cb and Cr based on luminance Y, and decodes them 
by the regression model. To make a fair comparison, it is 
necessary to consider both luminance and chrominance. At 
the decoder, Cb and Cr were reconstructed by decoded lu-
minance Ŷ together with w*s in SLBA/SLBA‐C, and com-
pensated in SLBA‐C. Then, the decoded YCbCr image was 
converted back to the RGB image. PSNRs were computed 
over each channel of the RGB image before calculating the 
average PSNR.

The m is still set to be 1024. For SLBA, the bit rate varies 
with CRY. For SLBA‐C, the total bits are consumed by the 
2m entries of w*s, Y, and DCr, and DCb; therefore, it is neces-
sary to present the detailed bit allocation scheme. Although 

F I G U R E  1 1  Comparison of the average PSNRs over R, G, and B components of the reconstructed images by SLBA, SLBA‐C, JPEG, 
JPEG2000, and JPEG‐XR on test images (A) Lena, (B) baboon, and (C) peppers

0.2 0.4 0.6 0.8 1.0
Bit per pixel (b/p)

22

24

26

28

30

32

34

36

38

40
PS

N
R 

(d
B)

JPEG
JPEG2000
SLBA-C
SLBA
JPEG-XR

0.2 0.4 0.6 0.8 1.0 1.2
Bit per pixel (b/p)

18

19

20

21

22

23

24

25

26

PS
N

R 
(d

B)

JPEG
JPEG2000
SLBA-C
SLBA
JPEG-XR

0.2 0.4 0.6 0.8 1.0
Bit per pixel (b/p)

20

22

24

26

28

30

32

34

36

38

PS
N

R 
(d

B)

JPEG
JPEG2000
SLBA-C
SLBA
JPEG-XR

(A) (B) (C)

F I G U R E  1 2  Comparison of SSIM of reconstructed images by SLBA, SLBA‐C, JPEG, JPEG2000, and JPEG‐XR on test images: (A) Lena, 
(B) baboon, and (C) peppers

0.2 0.4 0.6 0.8
Bit per pixel (b/p)

0.95

0.96

0.97

0.98

0.99

1.00

SS
IM JPEG 

JPEG2000 

SLBA 

SLBA-C 

JPEG-XR

0.5 1.0 1.5
Bit per pixel (b/p)

0.6

0.7

0.8

0.9

SS
IM

JPEG 

JPEG2000 

SLBA 

SLBA-C 

JPEG-XR

0.2 0.4 0.6 0.8
Bit per pixel (b/p)

0.90

0.92

0.94

0.96

0.98

1.00

SS
IM JPEG 

JPEG2000 

SLBA 

SLBA-C 

JPEG-XR

(A) (B) (C)



268 |   LIU et aL.

CRY has a slight impact on the prediction accuracy of chromi-
nance (as shown in Figure 8), the experiments showed that 
CRY significantly impacted the average PSNR over R, G, and 
B components. This result is natural because the R, G, and 
B components are highly correlated with Y, as shown by the 
following color space conversion formulas:

Therefore, CRY is the dominant factor in the reconstructed 
RGB image by SLBA‐C. We set CRdiff to be 100, and the bit 
rate varies with CRY in SLBA‐C.

We use MATLAB's built‐in function imwrite for JPEG 
and JPEG2000 testing, and reference software jxrlib [20] for 
JPEG‐XR testing. The bit rates of compression using JPEG 
and JPEG2000 were changed by modifying the quality factor 
“Quality” and compression ratio “CompressionRatio” of the 
imwrite function, respectively; the bit rates using JPEG‐XR 
was changed by “‐q” of the encoder program JXREncApp.
exe.

PSNR and SSIM were adopted to assess the recon-
structed images by SLBA, SLBA‐C, JPEG, JPEG2000, and 
JPEG‐XR, as presented in Figures 11 and 12, respectively. 
Unlike TEM that cannot achieve a PSNR comparable to that 
of JPEG, we can see, from Figures 11 and 12, that SLBA 
significantly outperforms JPEG and even JPEG‐XR at var-
ious bit rates in terms of both the objective metric PSNR 
and subjective metric SSIM. Although SLBA is inferior to 
JPEG2000, SLBA‐C is very close to JPEG2000, particu-
larly in terms of SSIM, and is even superior to JPEG2000 
for image baboon at a high bit rate, as shown in Figures 
11B and 12B. Overall, compared with JPEG2000, SLBA‐C 
is still not good enough. This is because not only Y, Cb, 
and Cr difference images are coded by JPEG2000 but also 
the 2m coefficients in w*s need to be entropy coded in 
SLBA‐C. Therefore, the bit overhead of SLBA‐C is greater 
than that of JPEG2000 to code the same image and achieve 
the same reconstructed quality.

From Figures 11 and 12, it is worth noting that SLBA 
outperforms SLBA‐C at bit rates approximately below 0.2 
b/p, as is also shown in Figures 13A2, A3, B2, B3, C2, 
and C3. The reason is the bit allocation. When the bit rate 
is small, besides the overhead for w*s, the remaining lim-
ited bits have to be distributed between the luminance and 
chrominance difference in SLBA‐C. The bits allocated to 
chrominance difference are tiny, which is the key factor af-
fecting the performance of SLBA‐C. Therefore, the effect 
of chrominance compensation is negligible. However, the 
bits are entirely concentrated on luminance, which is cru-
cial for the average PSNR over R, G, and B components in 

SLBA. Consequently, SLBA outperforms SLBA‐C. With 
the bit rate increasing, chrominance compensation works 
effectively, and Cb and Cr are significantly improved. The 

R=1.164(Y−16)+1.596(Cr−128),

G=1.164(Y−16)−0.813(Cr−128)−0.391(Cb−128),

B=1.164(Y−16)+2.018(Cb−128).

F I G U R E  1 3  Reconstructed images for (A) Lena, (B) baboon, 
and (C) peppers by SLBA, SLBA‐C, JPEG, JPEG2000, and JPEG‐XR

(A1) Original (A2) SLBA
         0.1617 b/p

(A3) SLBA-C
         0.1656 b/p

(A4)  JPEG
          0.1749 b/p

(A5) JPEG2000  
        0.1407 b/p   

 (A6) JPEG-XR
0.1644 b/p

(B1) Original (B2) SLBA
         0.1557 b/p

(B3)   SLBA-C
          0.1602 b/p

(B4)  JPEG
          0.1974 b/p

(B5) JPEG2000
         0.1443 b/p

(B6)  JPEG-XR
          0.1758 b/p

(C1) Original (C2) SLBA
        0.1542 b/p

(C3) SLBA-C
        0.1584 b/p

(C4) JPEG
        0.1935 b/p

(C5)  JPEG2000
          0.1533 b/p

(C6) JPEG-XR
          0.1550 b/p



   | 269LIU et aL.

R, G, and B components are better reconstructed accord-
ingly. As a result, SLBA‐C outperforms SLBA. Figure 
13A4, B4, and C4 also shows that, at a low bit rate, JPEG 
has the worst quality with the most bits per pixel (bpp), 
with extremely obvious blocking artifacts in the recon-
structed images. Figure 13A5, B5, and C5 shows that 
JPEG2000 always achieves the best quality with the least 
bpp. JPEG‐XR reconstructed the images at low bit rate 
also show some blocking artifacts although not so obvious 
as JPEG, as shown in Figure 13A6, B6, and C6. In the 
proposed SLBA/SLBA‐C, such blocking artifacts do not 
exist.

The SSIM and PSNR plots shown in Figure 14 were gen-
erated by interpolating the SSIM and PSNR curves of each 
image, evaluating the values at the specified bpp points, and 
then averaging them because the bpp coordinates of different 
images were different. The average SSIM curves in Figure 
14A show that SLBA is superior to JPEG but inferior to 
JPEG2000. Compared with JPEG‐XR, SLBA outperforms 
it when bpp < 0.4 b/p and is very close to it at the higher 
bpp. SLBA‐C outperforms both JPEG and JPEG‐XR signifi-
cantly. Although it is still inferior to JPEG2000, it is close 
to JPEG2000 when bpp > 0.4 b/p. We again find that SLBA 
performs better than SLBA‐C when bpp < 0.2 b/p. The av-
erage PSNR curves in Figure 14B give approximately the 
same comparison trend but with more apparent differences 
between the curves when bpp > 0.3 b/p. Based on the data 
in Figure 14, we demonstrated the average gain in SSIM and 
PSNR, that is, BD‐SSIM and BD‐PSNR [21] values, with 
respect to JPEG in Table 2. BD‐SSIM is similar to BD‐PSNR 
and the logarithmic bit rate is not used here. The data in Table 
2 reveal that, on average, SLBA‐C outperforms SLBA; and 
they both perform better than JPEG/JPEG‐XR but are still 
inferior to JPEG2000.

4.7 | Comparison of computation 
complexities
It is noteworthy that the superiority of SLBA/SLBA‐C 
over its predecessor TEM/TEM‐C is not achieved at the 
cost of higher computational complexity. For TEM, the 
total number of training points is assumed to be n; if l seed 
points are to be selected, then TEM has to iterate the se-
lection process for n −  l times, as described in Section 2. 
Although the KPCAM of size m is adopted in TEM, the 
computational complexity for selecting one point is still 
as large as O(nm2). The total computational complexity of 
the seed selection process is O((n − l)nm2), which accounts 
for the main computational burden of TEM. On the con-
trary, SLBA has no such computational burden. It signifi-
cantly reduces the computation time compared with that of 
TEM. We also modified the computation of w*s of (9) as 
w* =  [ΦJΦT + λ1Im]–1ΦYU, where J =  In + λ2L, which 
further reduces the computational cost of the matrix multi-
plication of ΦΦT.

It has been reported that previous methods take more 
than 1 hour to encode an image of size similar to that used 
in our experiments [12]. Using our experimental platform, 
TEM took more than 4 hour to encode an image 512 × 512 
in size. Most of the time was spent on seed selection. 
However, SLBA/SLBA‐C does not require seed selection. 
The typical (m = 1024) coding and decoding times required 
by SLBA‐C for the same image are approximately 2.5 and 
1.5 minutes, respectively. The coding time of SLBA‐C is 
approximately 1% of that required by TEM [12]. The de-
coding time of SLBA‐C is mainly spent on predicting Cb 
and Cr. However, compared with JPEG/JPEG2000/JPEG‐
XR, SLBA and SLBA‐C still run slower because they 
have to compute and code w*s in addition to coding Y and 
chrominance difference images. Additionally, chrominance 
prediction is more time‐consuming than decoding in stan-
dard methods in that the prediction needs to be carried out 
pixel by pixel.

All the experiments described in this paper were im-
plemented in a MATLAB 2018a environment running on 
Intel(R) Core i5‐3210M CPU with a speed of 2.5 GHz.

F I G U R E  1 4  (A) Average SSIM (B) 
and average PSNR on 20 test images by 
SLBA, SLBA‐C, JPEG, JPEG2000, and 
JPEG‐XR

0.2 0.4 0.6 0.8
Bits per pixel (b/p)

0.75

0.80

0.85

0.90

0.95

SS
IM

SLBA
SLBA-C
JPEG
JPEG2000
JPEG-XR

0.2 0.4 0.6 0.8
Bits per pixel (b/p)

15

20

25

30

35

PS
N

R 
(d

B) SLBA
SLBA-C
JPEG
JPEG2000
JPEG-XR

(A) (B)

T A B L E  2  Average gain in SSIM and PSNR with respect to 
JPEG measured with Bjontegaard metric

SLBA SLBA‐C JPEG‐XR JPEG‐2000

+0.0607 +0.0665 +0.0580 +0.0759

+2.3346 +3.6655 +1.8571 +5.0068



270 |   LIU et aL.

5 |  CONCLUSIONS

In this paper, we proposed the SLBA/SLBA‐C algorithm 
for color image compression. Although SLBA evolved 
from TEM, it outperforms TEM in that it does not require 
time‐consuming active learning for pixel point selection. 
Furthermore, with faster running speed, the performance of 
SLBA is superior to TEM considered to be the best method 
of its kind. This superiority is attributed to achieving total 
prediction error minimization in the LapRLS objective 
function and implementing KPCAM on the fixed grids of 
training points. In addition, chrominance subsampling and 
entropy coding of w*s decrease the bit rate and play an 
important role in the excellent RD performance of SLBA/
SLBA‐C.

We also explored the factors that impact the performance 
of SLBA/SLBA‐C. m is the leading parameter for chromi-
nance prediction. However, the prediction performance 
tends to be saturated when m exceeds a certain value, for ex-
ample, 1024 in our experiments. If m is fixed, CRY impacts 
the prediction accuracy slightly. For SLBA‐C, the quality 
of the reconstructed chrominance depends heavily on CRdiff 
but slightly on CRY. However, the average PSNR on R, G, 
and B components still depends heavily on CRY in SLBA‐C.

In terms of the implementation speed, there still exists 
a gap between SLBA/SLBA‐C and JPEG/JPEG2000/JPEG‐
XR. However, it has been shown that SLBA and SLBA‐C 
outperform JPEG and even JPEG‐XR at low bit rates in 
terms of RD performance. In particular, SLBA‐C performs 
close to JPEG2000 in SSIM metric at high bit rates, whereas 
SLBA outperforms SLBA‐C at low bit rates. SLBA and 
SLBA‐C outperform their predecessors [9,11,12] that uni-
fied semi‐supervised learning and active learning in terms 
of both running speed and RD performance. However, 
compared with Lee's [7] and Uruma's methods [8], SLBA 
and SLBA‐C are inferior to them because their methods 
can perform even better than JPEG2000. This is because 
SLBA and SLBA‐C minimize the prediction error over the 
training points only, while Lee's and Uruma's methods min-
imize the colorization error over the whole original image. 
Therefore, more studies are required to improve and extend 
this algorithm using a prediction model trained by learn-
ing. To further reduce the computational complexity for 
optimization over all the pixels instead of training points, 
other alternatives to KPCAM, such as random feature [22], 
could be explored to improve computational efficiency. The 
possibility of parallel calculation could also be explored to 
speed up the proposed algorithm. To extend this research, 
in the future, we can investigate the possibility of using 
SLBA/SLBA‐C to exploit the interchannel correlation be-
tween frames in a video and make comparisons with the 
methods in [5,6].

ORCID

Xue‐Dong Liu   https://orcid.org/0000-0002-6598-953X 

REFERENCES

 1. JPEG Std. ISO/IEC 10918 ‐ 1 and ITU ‐ T.81, Information 
Technology: Digital Compression and Coding of Continuous ‐ 
Tone Still Images: Requirements and Guidelines, 1993.

 2. M. Charrier, D. S. Cruz, and M. Larsson, JPEG2000, the next mil-
lennium compression standard for still images, in Proc. Int. Conf. 
Multimedia Comput. Syst., Florence, Italy, June 1999, pp. 131–132.

 3. F. Dufaux, G. J. Sullivan, and T. Ebrahimi, The JPEG XR image 
coding standard [Standards in a Nutshell], IEEE Signal Process. 
Mag., 26 (2009), no. 6, 195–199 and 204.

 4. K. R. Rao, J. J. Hwang, and D. N. Kim, High Efficiency Video 
Coding and Other Emerging Standards, River Publishers, Aalborg, 
Denmark, 2017.

 5. X. Zhang, F. Zou, and O. C. Au, Chrominance intra‐prediction 
based on inter‐channel correlation for HEVC, IEEE Trans. Image 
Process. 23 (2014), no. 1, 274–286.

 6. K. Zhang et al., Enhanced cross‐component linear model for 
chroma intra‐prediction in video coding, IEEE Trans. Image 
Process. 27 (2018), no. 8, 3983–3997.

 7. S. Lee et al., Colorization‐based compression using optimization, 
IEEE Trans. Image Process. 22 (2013), no. 7, 2627–2636.

 8. K. Uruma et al., Colorization‐based image coding using graph Fourier 
transform, Signal Process.: Image Com. 74 (2019), 266–279.

 9. L. Cheng and S. V. N. Vishwanathan, Learning to compress images 
and videos, in Proc. Mach. Learn., Corvallis, OR, USA, June 2007, 
pp. 161–168.

 10. A. Atkinson, A. Donev, and R. Tobias, Optimum Experimental 
Designs With SAS (Series Oxford Statistical Science), Oxford Univ. 
Press, Oxford, U.K., 2007, pp. 151–153.

 11. X. He, M. Ji, and H. Bao, A unified active and semi‐supervised 
learning framework for image compression, in Proc. IEEE Conf. 
CVPR, Miami, FL, USA, June 2009, pp. 65–72.

 12. C. Zhang and X. He, Image compression by learning to minimize 
the total error, IEEE Trans. Circuits Syst. Video Technol. 23 
(2013), no. 4, 565–576.

 13. M. Belkin, P. Niyogi, and V. Sindhwani, Manifold regularization: 
A geometric framework for learning from labeled and unlabeled 
examples, J. Mach. Learn. 7 (2006), 2399–2434.

 14. X. Liu and J. Yang, Fast and high efficient color image compression 
using machine learning, in Proc. IEEE Adv. Inf. Manag. Commun. 
Electron. Autom. Contr. Conf., Xi’an, China, May 2018, pp. 470–473.

 15. B. Schölkopf and A. J. Smola, Learning with Kernels: Support 
Vector Machines, Regularization, Optimization, and Beyond, MIT 
Press, Cambridge, MA, 2001.

 16. F. R. K. Chung, Spectral Graph Theory, Am. Math. Soc., 
Providence, RI, 1997.

 17. J. Shi and J. Malik, Normalized cuts and image segmentation, 
IEEE Trans. Patt. Anal. Mach. Intell. 22 (2000), no. 8, 888–905.

 18. Z. Wang et al., Image quality assessment: From error visibility to 
structural similarity, IEEE Trans. Image Process. 13 (2004), no. 4, 
600–612.

 19. G. A. F. Seber, A Matrix Handbook for Statisticians (Wiley Series 
in Probability and Mathematical Statistics), Wiley, Hoboken, NJ, 
USA, 2008.

https://orcid.org/0000-0002-6598-953X
https://orcid.org/0000-0002-6598-953X


   | 271LIU et aL.

 20. CodePlex Archive, Open source implementation of jpegxr, 
Available from https ://archi ve.codep lex.com/?p=jxrlib

 21. G. Bjontegaard, Calculation of Average PSNR Differences Between 
RD Curves, Document VCEG‐M33, ITU‐T Q6/16, Austin, TX, 
USA, 2001.

 22. A. Rahimi and B. Recht. Random features for large‐scale kernel 
machines, in Proc. Int. Conf. Neural Inf. Process. Syst., Vancouver, 
Canada, Dec. 2008, pp. 1177–1184.

AUTHOR BIOGRAPHIES

Xue‐Dong Liu received his bachelor's 
degree in engineering from the School 
of Engineering, North China University 
of Technology, Beijing, China, in 1998; 
master's degree in communications and 
information system from the School of 
Information Engineering, Wuhan 

University of Technology, Wuhan, Hubei, China, in 2003; 
and doctorate degree in control science and engineering 
from the Institute of Image Recognition & Artificial 
Intelligence, Huazhong University of Science and 
Technology, Wuhan, Hubei, China, in 2009. Since 2003, he 
has been working at the School of Information Engineering, 
Wuhan University of Technology, Wuhan, Hubei, China, 
where he is now an associate professor. His main research 
interests are digital image processing, video compression, 
and machine learning.

Meng‐Yue Wang received her bache-
lor's degree in engineering from North 
China University of Water Resources 
and Electric Power, Zhengzhou, 
Henan, China, in 2018, and is currently 
pursuing her master's degree at the 
School of Information Engineering, 

Wuhan University of Technology, Wuhan, Hubei, China. 
Her research interests include machine learning and digi-
tal image compression.

Ji‐Ming Sa received his bachelor's de-
gree in control engineering from the 
School of Automotive Engineering, 
Wuhan University of Technology, 
Wuhan, China, in 1995; master's de-
gree in control engineering from the 
School of Automotive Engineering, 

Wuhan University of Technology, Wuhan, Hubei, China, 
in 2001; and doctorate degree in mechatronics engineer-
ing from the School of Mechanical Science and 
Engineering, Huazhong University of Science and 
Technology, Wuhan, Hubei, China, in 2007. Since 2008, 
he has been working at the School of Information 
Engineering, Wuhan University of Technology, Wuhan, 
Hubei, China, where he is now an associate professor. His 
main research interests are digital image processing and 
machine learning.

https://archive.codeplex.com/?p=jxrlib

