DOI QR코드

DOI QR Code

Covered Microlens Structure for Quad Color Filter Array of CMOS Image Sensor

  • Jae-Hyeok Hwang (Department of ICT Integrated Safe Ocean Smart Cities Engineering, Dong-A University) ;
  • Yunkyung Kim (Department of ICT Integrated Safe Ocean Smart Cities Engineering, Dong-A University)
  • Received : 2023.04.03
  • Accepted : 2023.09.08
  • Published : 2023.10.25

Abstract

The pixel size in high-resolution complementary metal-oxide-semiconductor (CMOS) image sensors continues to shrink due to chip size limitations. However, the pixel pitch's miniaturization causes deterioration of optical performance. As one solution, a quad color filter (CF) array with pixel binning has been developed to enhance sensitivity. For high sensitivity, the microlens structure also needs to be optimized as the CF arrays change. In this paper, the covered microlens, which consist of four microlenses covered by one large microlens, are proposed for the quad CF array in the backside illumination pixel structure. To evaluate the optical performance, the suggested microlens structure was simulated from 0.5 ㎛ to 1.0 ㎛ pixels at the center and edge of the sensors. Moreover, all pixel structures were compared with and without in-pixel deep trench isolation (DTI), which works to distribute incident light uniformly into each photodiode. The suggested structure was evaluated with an optical simulation using the finite-difference time-domain method for numerical analysis of the optical characteristics. Compared to the conventional microlens, the suggested microlens show 29.1% and 33.9% maximum enhancement of sensitivity at the center and edge of the sensor, respectively. Therefore, the covered microlens demonstrated the highly sensitive image sensor with a quad CF array.

Keywords

Acknowledgement

The EDA tool was supported by the IC Design Education Center (IDEC), Korea.

References

  1. S. Yoon, J. Yun, Y. Jung, I. Jeong, J. Choi, W. Choi, J. Lee, H. Lee, and J. Ko, "World largest mobile image sensor with all directional phase detection auto focus function," in Proc. IEEE Hot Chips 33 Symposium-HCS (Palo Alto, CA, USA, Aug. 22-24, 2021), pp. 1-22.
  2. R. Fontaine, "The state-of-the-art of smartphone imagers," in Proc. International Image Sensors Workshop (Snowbird, Utah, USA, Jun. 23-27, 2019), Article no. R01.
  3. J. Nakamura, Image Sensors and Signal Processing for Digital Still Cameras (CRC press, USA, 2017), pp. 53-93.
  4. B. C. Hseih, H. Siddiqui, J. Luo, T. Georgiev, K. Atanassov, S. Goma, H. Y. Cheng, J. J. Sze, R. J. Lin, K. Y. Chou, C. Chao, and S. G. Wuu, "New color filter patterns and demosaic for sub-micron pixel arrays," in Proc. International Image Sensor Workshop (Vaals, Netherlands, Jun. 8-11, 2015), pp. 8-11.
  5. B. J. Park, J. Jung, C. R. Moon, S. H. Hwang, Y. W. Lee, D. W. Kim, K. H. Paik, J. R. Yoo, D. H. Lee, and K. Kim, "Deep trench isolation for crosstalk suppression in active pixel sensors with 1.7 ㎛ pixel pitch," Jpn J. Appl. Phys. 46, 2454 (2007).
  6. Y. Kitamura, H. Aikawa, K. Kakehi, T. Yousyou, K. Eda, T. Minami, S. Uya, Y. Takegawa, H. Yamashita, Y. Kohyama, and T. Asami, "Suppression of crosstalk by using backside deep trench isolation for 1.12 ㎛ backside illuminated CMOS image sensor," in Proc. IEEE International Electron Devices Meeting-IEDM (San Francisco, CA, USA, Dec. 10-13, 2012), pp. 24.2.1-24.2.4.
  7. Y. Kim, W. Choi, D. Park, H. Jeoung, B. Kim, Y. Oh, S. Oh, B. Park, E. Kim, Y. Lee, T. Jung, Y. Kim, S. Yoon, S. Hong, J. Lee, S. Jung, C.-R. Moon, Y. Park, D. Lee, and D. Chang, "A 1/2.8-inch 24Mpixel CMOS image sensor with 0.9 ㎛ unit pixels separated by full-depth deep-trench isolation," in Proc. International Solid-State Circuits Conference-ISSCC (San Francisco, CA, USA, Feb. 11-15, 2018), pp. 84-86.
  8. S. Park, C. Lee, S. Park, H. Park, T. Lee, D. Park, M. Heo, I. Park, H. Yeo, Y. Lee, J. Lee, B. Lee, D.-C. Lee, J. Kim, B. Kim, J. Pyo, S. Quan, S. You, I. Ro, S. Choi, S. I. Kim, I. S. Joe, J. Park, C. H. Koo, J. H. Kim, C. K. Chang, T. Kim, J. Kim, J. Lee, H. Kim, C. R. Moon, and H. S. Kim, "A 64Mpixel CMOS image sensor with 0.56 ㎛ unit pixels separated by front deep-trench isolation," in Proc. Solid-State Circuits Conference-ISSCC (San Francisco, CA, USA, Feb. 20-26, 2022), pp. 1-3.
  9. Y. W. Cheng, T. H. Tsai, C. H. Chou, K. C. Lee, H. C. Chen, and Y. L. Hsu, "Optical performance study of BSI image sensor with stacked grid structure," in Proc. International Electron Devices Meeting-IEDM (Washington, DC, USA, Dec. 7-9, 2015), pp. 30.4.1-30.4.4.
  10. I. S. Joe, Y. Lee, H. Y. Park, J. U. Kim, D. Kang, T. Kim, M. Kim, K. Lee, M. Heo, I. Ro, J. Kim, I. Park, S. Kwon, K. Yoon, D. Park, C. Lee, E. Jo, M. Jeon, C. Park, K. R. Byun, C. K. Chang, J. Hur, K. Yoon, T. Jeon, J. Lee, J. Park, B. Kim, J. Ahn, H. Kim, C. R. Moon, and H. S. Kim, "Development of advanced inter-color-filter grid on sub-micron-pixel CMOS image sensor for mobile cameras with high sensitivity and high resolution," in Proc. Symposium on VLSI Technology (Kyoto, Japan, 13-19, Jun. 2021), pp. 1-2.
  11. S. Yokogawa, S. P. Burgos, and H. A. Atwater, "Plasmonic color filters for CMOS image sensor applications," Nano Lett. 12, 4349-4354 (2012). https://doi.org/10.1021/nl302110z
  12. B. H. Chen, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J. W. Chen, Y. H. Chen, Y. C. Lan, C. H. Kuan, and D. P. Tsai, "GaN metalens for pixel-level full-color routing at visible light," Nano Lett. 17, 6345-6352 (2017). https://doi.org/10.1021/acs.nanolett.7b03135
  13. S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J. J. Piqueras, R. Perez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galan, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, and F. Koppens, "Broadband image sensor array based on graphene-CMOS integration," Nat. Photonics 11, 366-371 (2017). https://doi.org/10.1038/nphoton.2017.75
  14. C. Choi, M. K. Choi, S. Liu, M. S. Kim, O. K. Park, C. Im, J. Kim, X. Qin, G. J. Lee, K. W. Cho, M. Kim, E. Joh, J. Lee, D. Son, S. H. Kwon, N. L. Jeon, Y. M. Song, N. Lu, and D. H. Kim, "Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array," Nat. Commun. 8, 1664 (2017).
  15. B. E. Bayer, "Color imaging array," U. S. Patent US3971065A (1976).
  16. L. Condat, "Color filter array design using random patterns with blue noise chromatic spectra," Image Vis. Comput. 28, 1196-1202 (2010). https://doi.org/10.1016/j.imavis.2009.12.004
  17. J. Wang, C. Zhang, and P. Hao, "New color filter arrays of high light sensitivity and high demosaicking performance," in Proc. IEEE International Conference on Image Processing (Brussels, Belgium, Sep. 11-14, 2011), pp. 3153-3156.
  18. C. Kwan and B. Chou, "Further improvement of debayering performance of RGBW color filter arrays using deep learning and pansharpening techniques," J. Imaging 5, 68 (2019).
  19. Y. Kim and Y. Kim, "High-sensitivity pixels with a quad-WRGB color filter and spatial deep-trench isolation," Sensors 19, 4653 (2019).
  20. Z. Zhimin, B. Pain, and E. R. Fossum, "Frame-transfer CMOS active pixel sensor with pixel binning," IEEE Trans. Electron Devices 44, 1764-1768 (1997). https://doi.org/10.1109/16.628834
  21. H. Y. Huang, P. A. Conge, and L. W. Huang, "CMOS image sensor binning circuit for low-light imaging," in Proc. IEEE Symposium on Industrial Electronics and Applications (Langkawi, Malaysia, Sep. 25-28, 2011), pp. 586-589.
  22. D. Park, S. W. Lee, J. Han, D. Jang, H. Kwon, S. Cha, M. Kim, H. Lee, S. Suh, W. Joo, Y. Lee, S. Nah, H. Jeong, B. Kim, S. Jung, J. Lee, Y. Kim, C. R. Moon, and Y. Park, "A 0.8 ㎛ smart dual conversion gain pixel for 64 Megapixels CMOS image sensor with 12k e-full-well capacitance and low dark noise," in Proc. International Electron Devices Meeting-IEDM (San Francisco, CA, USA, Dec. 7-11, 2019), pp. 16.2.1-16.2.4.
  23. T. Okawa, S. Ooki, H. Yamajo, M. Kawada, M. Tachi, K. Goi, T. Yamasaki, H. Iwashita, M. Nakamizo, T. Ogasahara, Y. Kitano, and K. Tatani, "A 1/2inch 48M all PDAF CMOS image sensor using 0.8 ㎛ Quad Bayer coding 2×2OCL with 1.0 lux minimum AF illuminance level," in Proc. International Electron Devices Meeting-IEDM (San Francisco, CA, USA, Dec. 7-11, 2019), pp. 16.3.1-16.3.4.
  24. E. Hecht, Optics, 5th ed. (Pearson Education, UK, 2017), pp. 129-133.
  25. J. K. Lee, A. Kim, D.W. Kang, and B. Y. Lee, "Efficiency enhancement in a backside illuminated 1.12 ㎛ pixel CMOS image sensor via parabolic color filters," Opt. Express 24, 16027-16036 (2016). https://doi.org/10.1364/OE.24.016027
  26. J. James, A. B. Unni, K. Taleb, J. P. Chapel, N. Kalarikkal, S. Varghese, G. Vignaud, and Y. Grohens, "Surface engineering of polystyrene-cerium oxide nanocomposite thin films for refractive index enhancement," Nano-Struct. Nano-Objects 17, 34-42 (2019). https://doi.org/10.1016/j.nanoso.2018.11.001
  27. Synopsys Inc., "TCAD Product Family," (Synopsys Inc.), https://www.synopsys.com/silicon/tcad.html (Accessed Date: May. 30, 2023).
  28. Sentaurus Device Electromagnetic Wave Solver User Guide, Version L-2016.03, (Synopsys Inc., CA, USA), pp. 1-68.
  29. A. Prajapati, Y. Nissan, T. Gabay, and G. Shalev, "Broadband absorption of the solar radiation with surface arrays of sub-wavelength light funnels," Nano Energy 54, 447-452 (2018). https://doi.org/10.1016/j.nanoen.2018.10.046
  30. T. Jung, M. Fujita, J. Cho, K. Lee, D. Seol, S. An, C. Lee, Y. Jeong, M. Jung, S. Park, S. Baek, S. Jung, S. Lee, J. Yun, E. S. Shim, H. Han, E. Park, H. Sul, S. Kang, K. Lee, J. C. Ahn, and D. Chang, "A 1/1.57-inch 50Mpixel CMOS image sensor with 1.0 ㎛ all-directional dual pixel by 0.5 ㎛-pitch full-depth deep-trench isolation technology," in Proc. International Solid-State Circuits Conference-ISSCC (San Francisco, CA, USA, Feb. 20-26, 2022), pp. 102-104.
  31. Y. Li, "Dependence of the focal shift on Fresnel number and f number," J. Opt. Soc. Am 72, 700-774 (1982).
  32. Y. Huo, C. C. Fesenmaier, and P. B. Catrysse, "Microlens performance limits in sub-2㎛ pixel CMOS image sensors," Opt. Express 18, 5861-5872 (2010). https://doi.org/10.1364/OE.18.005861
  33. H. Bak, H. Lee, W. J. Kim, I. Choi, H. Kim, D. Kim, H. Lee, S. Han, K.I. Lee, Y. Do, M. Cho, M. S. Baek, K. Kim, W. Park, S. H. Kang, S. J. Hong, S. J. Hong, and C. Song, "Advanced color filter isolation technology for sub-micron pixel of CMOS image sensor," in Proc. International Electron Devices Meeting-IEDM (San Francisco, CA, USA, Dec. 3-7, 2022), pp. 37.6.1-37.6.4.
  34. H. Kim, J. Park, I. Joe, D. Kwon, J. H. Kim, D. Cho, T. Lee, C. Lee, H. Park, S. Hong, C. Chang, J. Kim, H. Lim, Y. Oh, Y. Kim, S. Nah, S. Jung, J. Lee, J. Ahn, H. Hong, K. Lee, and H.-K. Kang, "5.6 A 1/2.65in 44Mpixel CMOS image sensor with 0.7 ㎛ pixels fabricated in advanced full-depth deep-trench isolation technology," in Proc. International Solid-State Circuits Conference-ISSCC (San Francisco, CA, USA, Feb. 16-20, 2020), pp. 104-106.
  35. H. Taguchi, "Technology of color filter materials for image sensor," in Proc. International Image Sensor Workshop (Hokkaido, Japan, Jun. 8-11, 2011), pp. 34-37.
  36. R. Fontaine, "The evolution of pixel structures for consumer-grade image sensors," IEEE Trans. Semiconduc. Manuf. 26, 11-16 (2013). https://doi.org/10.1109/TSM.2012.2237187
  37. G. Agranov, R. Mauritzson, J. Ladd, A. Dokoutchaev, X. Fan, X. Li, Z. Yin, R. Johnson, V. Lenchenkov, S. Nagaraja, W. Gazeley, J. Bai, H. Lee, A. D'Anna, and G. De-Amicis, "Pixel continues to shrink, pixel development for novel CMOS image sensors," in Proc. International Image Sensor Workshop (Bergen, Norway, Jun. 22-28, 2009), pp. 69-72.
  38. S. Choi, K. Lee, J. Yun, S. Choi, S. Lee, J. Park, E. S. Shim, J. Pyo, B. Kim, M. Jung, Y. Lee, K. Son, S. Jung, T. Wang, Y. Choi, D. Min, J. Im, C. Moon, D. Lee, and D. Chang, "An all pixel PDAF CMOS image sensor with 0.64 ㎛ × 1.28 ㎛ photodiode separated by self-aligned in-pixel deep trench isolation for high AF performance," in Proc. IEEE Symposium on VLSI Technology (Kyoto, Japan, Jun. 5-8, 2017), pp. T104-T105.
  39. V. Blahnik and O. Schindelbeck, "Smartphone imaging technology and its applications," Adv. Opt. Technol. 10, 145-232 (2021). https://doi.org/10.1515/aot-2021-0023
  40. K. Uehira, "Microlens and method of manufacturing microlens," U. S. Patent US20160181309A1 (2016).